Estimating the active demension of the dynamics in a time series based on an information criterion
暂无分享,去创建一个
[1] C. R. Rao,et al. Linear Statistical Inference and its Applications , 1968 .
[2] K. Ikeda. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system , 1979 .
[3] F. Takens. Detecting strange attractors in turbulence , 1981 .
[4] J. Rissanen. A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .
[5] Jorma Rissanen,et al. Universal coding, information, prediction, and estimation , 1984, IEEE Trans. Inf. Theory.
[6] G. P. King,et al. Extracting qualitative dynamics from experimental data , 1986 .
[7] Farmer,et al. Predicting chaotic time series. , 1987, Physical review letters.
[8] G. P. King,et al. Topological dimension and local coordinates from time series data , 1987 .
[9] Martin Casdagli,et al. Nonlinear prediction of chaotic time series , 1989 .
[10] M. Kotrla,et al. Kinetic six-vertex model as model of bcc crystal growth , 1991 .
[11] J. D. Farmer,et al. State space reconstruction in the presence of noise" Physica D , 1991 .
[12] H. Abarbanel,et al. Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[13] L. Tsimring,et al. The analysis of observed chaotic data in physical systems , 1993 .
[14] H. Abarbanel,et al. Local false nearest neighbors and dynamical dimensions from observed chaotic data. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[15] N. Tanaka,et al. Estimating the number of reaction intermediates for formaldehyde oxidation by analysis of the chaotic behavior , 1994 .
[16] N. Tanaka,et al. An optimal metric for predicting chaotic time series , 1995 .
[17] N. Tanaka,et al. Dynamics of potential oscillations in the electrochemical oxidation of formic acid on Pt , 2000 .