Estimating the active demension of the dynamics in a time series based on an information criterion

[1]  C. R. Rao,et al.  Linear Statistical Inference and its Applications , 1968 .

[2]  K. Ikeda Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system , 1979 .

[3]  F. Takens Detecting strange attractors in turbulence , 1981 .

[4]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[5]  Jorma Rissanen,et al.  Universal coding, information, prediction, and estimation , 1984, IEEE Trans. Inf. Theory.

[6]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[7]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[8]  G. P. King,et al.  Topological dimension and local coordinates from time series data , 1987 .

[9]  Martin Casdagli,et al.  Nonlinear prediction of chaotic time series , 1989 .

[10]  M. Kotrla,et al.  Kinetic six-vertex model as model of bcc crystal growth , 1991 .

[11]  J. D. Farmer,et al.  State space reconstruction in the presence of noise" Physica D , 1991 .

[12]  H. Abarbanel,et al.  Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[13]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[14]  H. Abarbanel,et al.  Local false nearest neighbors and dynamical dimensions from observed chaotic data. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  N. Tanaka,et al.  Estimating the number of reaction intermediates for formaldehyde oxidation by analysis of the chaotic behavior , 1994 .

[16]  N. Tanaka,et al.  An optimal metric for predicting chaotic time series , 1995 .

[17]  N. Tanaka,et al.  Dynamics of potential oscillations in the electrochemical oxidation of formic acid on Pt , 2000 .