Multivariate singular spectrum analysis and the road to phase synchronization.

We show that multivariate singular spectrum analysis (M-SSA) greatly helps study phase synchronization in a large system of coupled oscillators and in the presence of high observational noise levels. With no need for detailed knowledge of individual subsystems nor any a priori phase definition for each of them, we demonstrate that M-SSA can automatically identify multiple oscillatory modes and detect whether these modes are shared by clusters of phase- and frequency-locked oscillators. As an essential modification of M-SSA, here we introduce variance-maximization (varimax) rotation of the M-SSA eigenvectors to optimally identify synchronized-oscillator clustering.

[1]  Michael Ghil,et al.  Oscillatory Climate Modes in the Eastern Mediterranean and Their Synchronization with the North Atlantic Oscillation , 2010 .

[2]  R. Vautard,et al.  Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series , 1989 .

[3]  H. Kaiser The varimax criterion for analytic rotation in factor analysis , 1958 .

[4]  Jürgen Kurths,et al.  Eigenvalue Decomposition as a Generalized Synchronization Cluster Analysis , 2007, Int. J. Bifurc. Chaos.

[5]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[6]  W. Marsden I and J , 2012 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  R. Vautard,et al.  Singular-spectrum analysis: a toolkit for short, noisy chaotic signals , 1992 .

[9]  Ivan Dvořák,et al.  Singular-value decomposition in attractor reconstruction: pitfalls and precautions , 1992 .

[10]  M. Paluš,et al.  Partitioning networks into clusters and residuals with average association. , 2010, Chaos.

[11]  Klaus Lehnertz,et al.  Identifying phase synchronization clusters in spatially extended dynamical systems. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[13]  M. Rycroft Our Changing Planet , 1997 .

[14]  M. Ghil,et al.  Spectral Methods: What They Can and Cannot do for Climatic Time Series , 1996 .

[15]  Robert F. Cahalan,et al.  Sampling Errors in the Estimation of Empirical Orthogonal Functions , 1982 .

[16]  Leonard A. Smith,et al.  Monte Carlo SSA: Detecting irregular oscillations in the Presence of Colored Noise , 1996 .

[17]  U. Stephani,et al.  Detection and characterization of changes of the correlation structure in multivariate time series. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Michael Ghil,et al.  ADVANCED SPECTRAL METHODS FOR CLIMATIC TIME SERIES , 2002 .

[19]  G. Plaut,et al.  Spells of Low-Frequency Oscillations and Weather Regimes in the Northern Hemisphere. , 1994 .

[20]  Grigory V. Osipov,et al.  PHASE SYNCHRONIZATION EFFECTS IN A LATTICE OF NONIDENTICAL ROSSLER OSCILLATORS , 1997 .

[21]  A. Pikovsky,et al.  Synchronization: Theory and Application , 2003 .

[22]  J. Doyne Farmer,et al.  Spectral Broadening of Period-Doubling Bifurcation Sequences , 1981 .

[23]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[24]  M. Ghil,et al.  Interdecadal oscillations and the warming trend in global temperature time series , 1991, Nature.

[25]  Michael Ghil,et al.  Multiple Flow Regimes in the Northern Hemisphere Winter. Part II: Sectorial Regimes and Preferred Transitions , 1993 .

[26]  Alan V. Oppenheim,et al.  Discrete-time signal processing (2nd ed.) , 1999 .

[27]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[28]  J. Kurths,et al.  Three types of transitions to phase synchronization in coupled chaotic oscillators. , 2003, Physical review letters.

[29]  Sarben Sarkar,et al.  Nonlinear phenomena and chaos , 1986 .

[30]  J. L. Hudson,et al.  Synchronization of non-phase-coherent chaotic electrochemical oscillations. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Robert E. Livezey,et al.  Practical Considerations in the Use of Rotated Principal Component Analysis (RPCA)in Diagnostic Studies of Upper-Air Height Fields , 1988 .

[32]  P. McClintock Synchronization:a universal concept in nonlinear science , 2003 .

[33]  J. Kurths,et al.  Phase Synchronization of Chaotic Oscillators by External Driving , 1997 .

[34]  R. Cattell The Scree Test For The Number Of Factors. , 1966, Multivariate behavioral research.

[35]  G. Burroughs,et al.  THE ROTATION OF PRINCIPAL COMPONENTS , 1961 .

[36]  G. P. King,et al.  Topological dimension and local coordinates from time series data , 1987 .

[37]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.