Characterization of space-dependent thermal conductivity for nonlinear functionally graded materials

[1]  V. D. Kupradze,et al.  The method of functional equations for the approximate solution of certain boundary value problems , 1964 .

[2]  V. D. Kupradze,et al.  A method for the approximate solution of limiting problems in mathematical physics , 1964 .

[3]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[4]  Y. S. Touloukian THERMOPHYSICAL PROPERTIES OF HIGH TEMPERATURE SOLID MATERIALS. , 1967 .

[5]  F. Erdogan,et al.  The crack problem for a nonhomogeneous plane , 1983 .

[6]  C. W. Groetsch,et al.  The theory of Tikhonov regularization for Fredholm equations of the first kind , 1984 .

[7]  T. Hirai,et al.  Design of SiC/C Functionally Gradient Material and Its Preparation by Chemical Vapor Deposition , 1989 .

[8]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[9]  M. Koizumi THE CONCEPT OF FGM , 1993 .

[10]  Christopher M. Bishop,et al.  Current address: Microsoft Research, , 2022 .

[11]  James V. Beck,et al.  Estimation of directional-dependent thermal properties in a carbon-carbon composite , 1996 .

[12]  W. K. Yeung,et al.  Second-order finite difference approximation for inverse determination of thermal conductivity , 1996 .

[13]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[14]  Alain J. Kassab,et al.  CHARACTERIZATION OF SPACE DEPENDENT THERMAL CONDUCTIVITY WITH A BEM-BASED GENETIC ALGORITHM , 2000 .

[15]  J. R. Berger,et al.  Fundamental solutions for steady-state heat transfer in an exponentially graded anisotropic material , 2005 .

[16]  Wŏn-yŏng Yang,et al.  Applied Numerical Methods Using MATLAB , 2005 .

[17]  Liviu Marin,et al.  Numerical solution of the Cauchy problem for steady-state heat transfer in two-dimensional functionally graded materials , 2005 .

[18]  Yen-Ling Chung,et al.  MECHANICAL BEHAVIOR OF FUNCTIONALLY GRADED MATERIAL PLATES UNDER TRANSVERSE LOAD-PART I: ANALYSIS , 2006 .

[19]  Daniel Lesnic,et al.  The method of fundamental solutions for nonlinear functionally graded materials , 2007 .

[20]  Bangti Jin,et al.  The method of fundamental solutions for inverse source problems associated with the steady‐state heat conduction , 2007 .

[21]  B. Meng,et al.  A method of fundamental solutions for inverse heat conduction problems in an anisotropic medium. , 2007 .

[22]  Y. Tanigawa,et al.  Transient piezothermoelastic analysis for a functionally graded thermopiezoelectric hollow sphere , 2007 .

[23]  Y. Hon,et al.  Method of fundamental solutions with regularization techniques for Cauchy problems of elliptic operators , 2007 .

[24]  Guowei Ma,et al.  Thermo-mechanical stresses in functionally graded circular hollow cylinder with linearly increasing boundary temperature , 2008 .

[25]  M. Garshasbi,et al.  Note on using radial basis functions and Tikhonov regularization method to solve an inverse heat conduction problem. , 2009 .

[26]  Habib Abida,et al.  Identification of compound channel flow parameters , 2009 .

[27]  Y. Tanigawa,et al.  Transient Thermoelastic Problem of a Functionally Graded Hollow Cylinder Due to Asymmetrical Surface Heating , 2009 .

[28]  Jan Adam Kołodziej,et al.  Application of the method of fundamental solutions and radial basis functions for inverse heat source problem in case of steady-state , 2010 .

[29]  P. Vadasz Analytical Solution to Nonlinear Thermal Diffusion: Kirchhoff Versus Cole–Hopf Transformations , 2010 .

[30]  Reza Barati,et al.  Parameter Estimation of Nonlinear Muskingum Models Using Nelder-Mead Simplex Algorithm , 2011 .

[31]  Jan Adam Kołodziej,et al.  The determination temperature-dependent thermal conductivity as inverse steady heat conduction problem , 2011 .

[32]  D. Lesnic,et al.  A survey of applications of the MFS to inverse problems , 2011 .

[33]  J. Kołodziej,et al.  Application of MFS for determination of effective thermal conductivity of unidirectional composites with linearly temperature dependent conductivity of constituents , 2012 .

[34]  D. L. Young,et al.  Transient 3D heat conduction in functionally graded materials by the method of fundamental solutions , 2014 .

[35]  Wen Chen,et al.  An ACA accelerated MFS for potential problems , 2014 .