Automorphism Groups of Countable Arithmetically saturated Models of Peano Arithmetic

If M,N are countable, arithmetically saturated models of Peano Arithmetic and Aut(M) is isomorphic to Aut(N), then the Turing-jumps of Th(M) and Th(N) are recursively equivalent.

[1]  James H. Schmerl,et al.  Remarks on Weak Notions of Saturation in Models of Peano Arithmetic , 1987, J. Symb. Log..

[2]  Stephen G. Simpson,et al.  Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.

[3]  Julia F. Knight Minimality and Completions of PA , 2001, J. Symb. Log..

[4]  George Wilmers,et al.  Models OF Peano Arithmetic (Oxford Logic Guides 15) , 1993 .

[5]  Ermek S. Nurkhaidarov Automorphism groups of arithmetically saturated models , 2006, J. Symb. Log..

[6]  James H. Schmerl,et al.  Saturation and simple extensions of models of peano arithmetic , 1984, Ann. Pure Appl. Log..

[7]  Henryk Kotlarski Automorphisms of Countable Recursively Saturated Models of PA: a Survey , 1995, Notre Dame J. Formal Log..

[8]  Richard Kaye,et al.  Automorphisms of Recursively Saturated Models of Arithmetic , 1991, Ann. Pure Appl. Log..

[9]  Carl G. Jockusch,et al.  On the strength of Ramsey's theorem for pairs , 2001, Journal of Symbolic Logic.

[10]  James H. Schmerl,et al.  Arithmetically Saturated Models of Arithmetic , 1995, Notre Dame J. Formal Log..

[11]  James H. Schmerl Automorphism Groups of Models of Peano Arithmetic , 2002, J. Symb. Log..

[12]  Roman Kossak On extensions of models of strong fragments of arithmetic , 1990 .

[13]  Carl G. Jockusch,et al.  Ramsey's theorem and recursion theory , 1972, Journal of Symbolic Logic.

[14]  Henryk Kotlarski,et al.  On Interstices of Countable Arithmetically Saturated Models of Peano Arithmetic , 1997, Math. Log. Q..

[15]  D. Scott Algebras of sets binumerable in complete extensions of arithmetic , 1962 .

[16]  James H. Schmerl,et al.  Automorphism Groups of saturated Models of Peano Arithmetic , 2014, J. Symb. Log..

[17]  James H. Schmerl,et al.  The Structure of Models of Peano Arithmetic , 2006 .

[18]  Angus Macintyre,et al.  Degrees of recursively saturated models , 1984 .

[19]  James H. Schmerl,et al.  The Automorphism Group of an Arithmetically Saturated Model of Peano Arithmetic , 1995 .

[20]  James H. Schmerl The automorphism group of a resplendent model , 2012, Arch. Math. Log..

[21]  Julia A. Knight,et al.  Computable structures and the hyperarithmetical hierarchy , 2000 .

[22]  Roman Kossak Models with the omega-Property , 1989, J. Symb. Log..