Experimental study of complex mixed-mode oscillations generated in a Bonhoeffer-van der Pol oscillator under weak periodic perturbation.

Bifurcations of complex mixed-mode oscillations denoted as mixed-mode oscillation-incrementing bifurcations (MMOIBs) have frequently been observed in chemical experiments. In a previous study [K. Shimizu et al., Physica D 241, 1518 (2012)], we discovered an extremely simple dynamical circuit that exhibits MMOIBs. Our model was represented by a slow/fast Bonhoeffer-van der Pol circuit under weak periodic perturbation near a subcritical Andronov-Hopf bifurcation point. In this study, we experimentally and numerically verify that our dynamical circuit captures the essence of the underlying mechanism causing MMOIBs, and we observe MMOIBs and chaos with distinctive waveforms in real circuit experiments.

[1]  Mohammad Reza Razvan,et al.  Symmetric bursting behaviors in the generalized FitzHugh–Nagumo model , 2013, Biological Cybernetics.

[2]  Takashi Hikihara,et al.  Period-doubling cascades of canards from the extended Bonhoeffer–van der Pol oscillator , 2010 .

[3]  J. G. Freire,et al.  Stern-Brocot trees in cascades of mixed-mode oscillations and canards in the extended Bonhoeffer-van der Pol and the FitzHugh-Nagumo models of excitable systems , 2011 .

[4]  Valery Petrov,et al.  Mixed‐mode oscillations in chemical systems , 1992 .

[5]  Shanmuganathan Rajasekar,et al.  Period doubling route to chaos for a BVP oscillator with periodic external force , 1988 .

[6]  Helwig Löffelmann,et al.  GEOMETRY OF MIXED-MODE OSCILLATIONS IN THE 3-D AUTOCATALATOR , 1998 .

[7]  F T Arecchi,et al.  Mixed-mode oscillations via canard explosions in light-emitting diodes with optoelectronic feedback. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Belinda Barnes,et al.  NUMERICAL STUDIES OF THE PERIODICALLY FORCED BONHOEFFER VAN DER POL SYSTEM , 1997 .

[9]  Horacio G. Rotstein,et al.  Introduction to focus issue: mixed mode oscillations: experiment, computation, and analysis. , 2008, Chaos.

[10]  H. Okamoto,et al.  Intermittencies and Related Phenomena in the Oxidation of Formaldehyde at a Constant Current , 1998 .

[11]  A. Kawczynski,et al.  Period-Adding Bifurcations in Mixed-Mode Oscillations in the Belousov-Zhabotinsky Reaction at Various Residence Times in a CSTR , 2001 .

[12]  Kuniyasu Shimizu,et al.  Mixed-mode oscillations and chaos from a simple second-order oscillator under weak periodic perturbation , 2011 .

[13]  Grebogi,et al.  Critical exponents for crisis-induced intermittency. , 1987, Physical review. A, General physics.

[14]  Shinji Doi,et al.  Global bifurcation structure of a Bonhoeffer-van der Pol oscillator driven by periodic pulse trains , 2004, Biological Cybernetics.

[15]  Multiparameter model of a dissipative nonlinear oscillator in the form of one-dimensional map , 1995 .

[16]  Irving R. Epstein,et al.  Systematic design of chemical oscillators. Part 13. Complex periodic and aperiodic oscillation in the chlorite-thiosulfate reaction , 1982 .

[17]  Georgi S. Medvedev,et al.  Multimodal regimes in a compartmental model of the dopamine neuron , 2004 .

[18]  Nikola Popović,et al.  Three Time-Scales In An Extended Bonhoeffer–Van Der Pol Oscillator , 2014, Journal of Dynamics and Differential Equations.

[19]  J. L. Hudson,et al.  An experimental study of multiple peak periodic and nonperiodic oscillations in the Belousov–Zhabotinskii reaction , 1979 .

[20]  F. Albahadily,et al.  Mixed‐mode oscillations in an electrochemical system. I. A Farey sequence which does not occur on a torus , 1989 .

[21]  Nancy Kopell,et al.  Mixed-Mode Oscillations in Three Time-Scale Systems: A Prototypical Example , 2008, SIAM J. Appl. Dyn. Syst..

[22]  Kuniyasu Shimizu,et al.  Complex mixed-mode oscillations in a Bonhoeffer–van der Pol oscillator under weak periodic perturbation , 2012 .

[23]  Igor Schreiber,et al.  Mixed-mode oscillations in a homogeneous pH-oscillatory chemical reaction system. , 2008, Chaos.

[24]  S Sato,et al.  Response characteristics of the BVP neuron model to periodic pulse inputs. , 1992, Mathematical biosciences.

[25]  Johan Grasman,et al.  Critical dynamics of the Bonhoeffer–van der Pol equation and its chaotic response to periodic stimulation , 1993 .

[26]  Harry L. Swinney,et al.  Complex periodic oscillations and Farey arithmetic in the Belousov–Zhabotinskii reaction , 1986 .

[27]  S Sato,et al.  The global bifurcation structure of the BVP neuronal model driven by periodic pulse trains. , 1995, Mathematical biosciences.

[28]  E. Kutafina Mixed mode oscillations in the Bonhoeffer-van der Pol oscillator with weak periodic perturbation , 2013 .

[29]  Hiroshi Kawakami,et al.  Bifurcation of periodic responses in forced dynamic nonlinear circuits: Computation of bifurcation values of the system parameters , 1984 .