Kinetic theory and rheology of bead‐rod models for macromolecular solutions. I. Equilibrium and steady flow properties

The behavior of macromolecules in solutions at rest and undergoing steady flow is considered. The Kramers' freely jointed bead‐rod model (the ``pearl‐necklace'' model) is used. It is shown that the distribution function for a random walk process is a good approximation to the true equilibrium distribution function for the pearl necklace as obtained by the methods of classical statistical mechanics. The rheological behavior in slow steady flow is solved exactly for the case of two links, and in an approximation for an arbitrary number of links. It is shown how the zero shear rate viscosity of the once‐broken rod model may be obtained by a minor modification of the case with two links. The behavior in large deformation rate elongational flow is investigated, including a comparison of rigid and flexible molecules, and an estimate of the elongation rates necessary to produce uncoiling of flexible macromolecules. It is finally shown that a bead‐rod model with a large number of links is approximated by a ``corresponding'' bead‐spring model.

[1]  M. Volkenstein,et al.  Statistical mechanics of chain molecules , 1969 .

[2]  D. J. Montgomery,et al.  The physics of rubber elasticity , 1949 .

[3]  R. Rivlin The normal-stress coefficient in solutions of macro-molecules , 1949 .

[4]  H. Kramers Het gedrag van macromoleculen in een stroomende vloeistof , 1944 .

[5]  P. Flory,et al.  The glass temperature and related properties of polystyrene. Influence of molecular weight , 1954 .

[6]  H. R. Warner,et al.  Kinetic theory and rheology of dumbbell suspensions with Brownian motion , 1971 .

[7]  Harold A. Scheraga,et al.  Analysis of the Contribution of Internal Vibrations to the Statistical Weights of Equilibrium Conformations of Macromolecules , 1969 .

[8]  A. S. Lodge,et al.  Constitutive equations for polymer solutions derived from the bead/spring model of Rouse and Zimm , 1971 .

[9]  R. Armstrong,et al.  Stress tensor for arbitrary flows of dilute solutions of rodlike macromolecules , 1973 .

[10]  R. Bird,et al.  Stress Relaxation of Solutions of Flexible Macromolecules , 1972 .

[11]  A. Pipkin,et al.  Small Finite Deformations of Viscoelastic Solids , 1964 .

[12]  R. Tanner,et al.  Erratum: Stresses in dilute solutions of bead‐nonlinear‐spring macromolecules. I. Steady potential and plane flows , 1971 .

[13]  S. Prager Stress‐Strain Relations in a Suspension of Dumbbells , 1957 .

[14]  H. F. Mark,et al.  Polymer Science and Materials , 1971 .

[15]  C. F. Curtiss,et al.  Potential Flows of Dilute Polymer Solutions by Kramers' Method , 1969 .

[16]  H. Giesekus Die Elastizität von Flüssigkeiten , 1966 .

[17]  H. Keller,et al.  Analysis of Numerical Methods , 1969 .

[18]  J. Ferry Viscoelastic properties of polymers , 1961 .

[19]  H. Giesekus Einige Bemerkungen zum Fließverhalten elasto-viskoser Flüssigkeiten in stationären Schichtströmungen , 1961 .

[20]  W. Stockmayer,et al.  Intrinsic vescosity of a once-broken rod. , 1967, The Journal of chemical physics.

[21]  Henry Margenau,et al.  The mathematics of physics and chemistry , 1943 .

[22]  John L. Lumley,et al.  Drag reduction in turbulent flow by polymer additives , 1973 .

[23]  J. Oldroyd On the formulation of rheological equations of state , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[24]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .