The isoperimetric problem on Riemannian manifolds via Gromov-Hausdorff asymptotic analysis

In this paper we prove the existence of isoperimetric regions of any volume in Riemannian manifolds with Ricci bounded below assuming Gromov–Hausdorff asymptoticity to the suitable simply connected model of constant sectional curvature. The previous result is a consequence of a general structure theorem for perimeterminimizing sequences of sets of fixed volume on noncollapsed Riemannian manifolds with a lower bound on the Ricci curvature. We show that, without assuming any further hypotheses on the asymptotic geometry, all the mass and the perimeter lost at infinity, if any, are recovered by at most countably many isoperimetric regions sitting in some (possibly nonsmooth) Gromov–Hausdorff limits at infinity. The Gromov–Hausdorff asymptotic analysis conducted allows us to provide, in low dimensions, a result of nonexistence of isoperimetric regions in Cartan– Hadamard manifolds that are Gromov–Hausdorff asymptotic to the Euclidean space. While studying the isoperimetric problem in the smooth setting, the nonsmooth geometry naturally emerges, and thus our treatment combines techniques from both the theories. MSC (2020). Primary: 49J45, 26B30, 53A35. Secondary: 53C23, 49J52.

[1]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[2]  F. Morgan Regularity of isoperimetric hypersurfaces in Riemannian manifolds , 2003 .

[3]  Gian Paolo Leonardi,et al.  Isoperimetric sets on Carnot groups , 2003 .

[4]  Generalized Compactness for Finite Perimeter Sets and Applications to the Isoperimetric Problem , 2015, Journal of Dynamical and Control Systems.

[5]  Yu Kitabeppu A Bishop type inequality on metric measure spaces with Ricci curvature bounded below , 2016, 1603.04162.

[6]  Manuel Ritor'e,et al.  Existence of isoperimetric regions in contact sub-Riemannian manifolds , 2010, 1011.0633.

[7]  Manuel Ritor'e,et al.  Existence and characterization of regions minimizing perimeter under a volume constraint inside Euclidean cones , 2003 .

[8]  Bruce Kleiner,et al.  An isoperimetric comparison theorem , 1992 .

[9]  M. Ritoré Constant geodesic curvature curves and isoperimetric domains in rotationally symmetric surfaces , 2001 .

[10]  F. Morgan,et al.  Existence of isoperimetric regions in R n with density , 2011, 1111.5160.

[11]  L. Ambrosio,et al.  Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces , 2015, Memoirs of the American Mathematical Society.

[12]  F. Morgan,et al.  Isoperimetric regions in cones , 2002 .

[13]  A. Mondino,et al.  Convergence of pointed non‐compact metric measure spaces and stability of Ricci curvature bounds and heat flows , 2013, 1311.4907.

[14]  Michele Miranda,et al.  Functions of bounded variation on “good” metric spaces , 2003 .

[15]  P. Lions The concentration-compactness principle in the calculus of variations. The locally compact case, part 1 , 1984 .

[16]  A. Luigi,et al.  Rigidity of the 1-Bakry–Émery Inequality and Sets of Finite Perimeter in RCD Spaces , 2018, Geometric and Functional Analysis.

[17]  Arcwise Isometries,et al.  A Course in Metric Geometry , 2001 .

[18]  T. Rajala Local Poincaré inequalities from stable curvature conditions on metric spaces , 2011, 1107.4842.

[19]  L. Ambrosio,et al.  Metric measure spaces with Riemannian Ricci curvature bounded from below , 2011, 1109.0222.

[20]  C. Croke,et al.  Some isoperimetric inequalities and eigenvalue estimates , 1980 .

[21]  F. Morgan Geometric Measure Theory: A Beginner's Guide , 1988 .

[22]  G. Huisken,et al.  The inverse mean curvature flow and the Riemannian Penrose Inequality , 2001 .

[23]  Jeff Cheeger,et al.  Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds , 1982 .

[24]  M. Ritoré The isoperimetric problem in complete surfaces of nonnegative curvature , 2001 .

[25]  Nicola Gigli,et al.  The splitting theorem in non-smooth context , 2013, 1302.5555.

[26]  T. Colding Ricci curvature and volume convergence , 1997 .

[27]  Enrico Pasqualetto,et al.  Rectifiability of the reduced boundary for sets of finite perimeter over $\RCD(K,N)$ spaces. , 2019, 1909.00381.

[28]  O. Chodosh,et al.  Large Isoperimetric Regions in Asymptotically Hyperbolic Manifolds , 2014, 1403.6108.

[29]  Karl-Theodor Sturm,et al.  On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces , 2013, 1303.4382.

[30]  L. Ambrosio,et al.  Riemannian Ricci curvature lower bounds in metric measure spaces with -finite measure , 2012, 1207.4924.

[31]  A. Carlotto,et al.  Effective versions of the positive mass theorem , 2016, Inventiones mathematicae.

[32]  Christopher B. Croke A sharp four dimensional isoperimetric inequality , 1984 .

[33]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .

[34]  A. Pratelli,et al.  Existence of Isoperimetric Sets with Densities “Converging from Below” on $${\mathbb {R}}^N$$RN , 2014, 1411.5208.

[35]  B. Chow,et al.  Hamilton's Ricci Flow , 2018 .

[36]  J. Metzger,et al.  Large isoperimetric surfaces in initial data sets , 2011, 1102.2999.

[37]  G. P. Leonardi,et al.  Isoperimetric inequalities in unbounded convex bodies , 2016, Memoirs of the American Mathematical Society.

[38]  Existence of CMC-foliations in asymptotically cuspidal manifolds , 2018, 1811.12054.

[39]  A. Mondino,et al.  On a isoperimetric-isodiametric inequality , 2016, 1603.05263.

[40]  S. Nardulli,et al.  Local Hölder continuity of the isoperimetric profile in complete noncompact Riemannian manifolds with bounded geometry , 2016, Geometriae Dedicata.

[41]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces. II , 2006 .

[42]  L. Ambrosio,et al.  New stability results for sequences of metric measure spaces with uniform Ricci bounds from below , 2016, 1605.07908.

[43]  G. Philippis,et al.  Non-collapsed spaces with Ricci curvature bounded from below , 2017, 1708.02060.

[44]  S. Yau,et al.  Lectures on Differential Geometry , 1994 .

[45]  O. Chodosh,et al.  Isoperimetric structure of asymptotically conical manifolds , 2015, 1503.05181.

[46]  D. Pallara,et al.  Heat semigroup and functions of bounded variation on Riemannian manifolds , 2007 .

[47]  P. Topping Ricci Flow and Ricci Limit Spaces , 2019, Geometric Analysis.

[48]  Frank Morgan,et al.  Some Sharp Isoperimetric Theorems for Riemannian Manifolds , 2000 .

[49]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.

[50]  J. Metzger,et al.  Unique isoperimetric foliations of asymptotically flat manifolds in all dimensions , 2012, Inventiones mathematicae.

[51]  P. Lions The concentration-compactness principle in the Calculus of Variations , 1984 .

[52]  Dachun Yang,et al.  Sobolev Spaces on Metric Measure Spaces , 2014 .

[53]  G. P. Leonardi,et al.  Isodiametric sets in the Heisenberg group , 2010, 1010.1133.

[54]  R. Pedrosa The Isoperimetric Problem in Spherical Cylinders , 2004 .

[55]  Emanuel Milman,et al.  The globalization theorem for the Curvature-Dimension condition , 2016, Inventiones mathematicae.

[56]  Vincent Bayle A differential inequality for the isoperimetric profile , 2004 .

[57]  A. Mondino,et al.  Existence of isoperimetric regions in non-compact Riemannian manifolds under Ricci or scalar curvature conditions , 2012, 1210.0567.

[58]  Simone Di Marino,et al.  Equivalent definitions of BV space and of total variation on metric measure spaces , 2014 .

[59]  Emmanuel Hebey Nonlinear analysis on manifolds: Sobolev spaces and inequalities , 1999 .

[60]  Gershon Wolansky,et al.  Optimal Transport , 2021 .

[61]  V. Bayle Propriétés de concavité du profil isopérimétrique et applications , 2003 .

[62]  S. Nardulli Generalized existence of isoperimetric regions in non-compact Riemannian manifolds and applications to the isoperimetric profile , 2012, 1210.1328.

[63]  Gioacchino Antonelli,et al.  Volume Bounds for the Quantitative Singular Strata of Non Collapsed RCD Metric Measure Spaces , 2019, Analysis and Geometry in Metric Spaces.

[64]  Yuguang Shi The isoperimetric inequality on asymptotically flat manifolds with nonnegative scalar curvature , 2015, 1503.02350.

[65]  A. Blaga On gradient η-Einstein solitons , 2018 .

[66]  L. Ambrosio CALCULUS, HEAT FLOW AND CURVATURE-DIMENSION BOUNDS IN METRIC MEASURE SPACES , 2019, Proceedings of the International Congress of Mathematicians (ICM 2018).

[67]  V. Agostiniani,et al.  Sharp geometric inequalities for closed hypersurfaces in manifolds with nonnegative Ricci curvature , 2018, Inventiones mathematicae.

[68]  P. Maheux,et al.  Analyse sur les boules d'un opérateur sous-elliptique , 1995 .

[69]  M. Rigoli,et al.  Vanishing and Finiteness Results in Geometric Analysis , 2008 .

[70]  Jeff Cheeger,et al.  On the structure of spaces with Ricci curvature bounded below. II , 2000 .

[71]  V. Minerbe On the asymptotic geometry of gravitational instantons , 2010 .

[72]  L. Ambrosio Fine Properties of Sets of Finite Perimeter in Doubling Metric Measure Spaces , 2002 .

[73]  F. Maggi Sets of Finite Perimeter and Geometric Variational Problems: Equilibrium shapes of liquids and sessile drops , 2012 .

[74]  N. Gigli On the differential structure of metric measure spaces and applications , 2012, 1205.6622.

[75]  Jeff Cheeger,et al.  Lower bounds on Ricci curvature and the almost rigidity of warped products , 1996 .

[76]  F. Almgren,et al.  Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints , 1975 .

[77]  I. Holopainen Riemannian Geometry , 1927, Nature.