A nuclear cAMP microdomain suppresses tumor growth by Hippo pathway inactivation

[1]  Aleksandra A. Petelski,et al.  Small-molecule inhibition of Lats kinases may promote Yap-dependent proliferation in postmitotic mammalian tissues , 2020, Nature Communications.

[2]  Lucas M. Stolerman,et al.  Phase Separation of a PKA Regulatory Subunit Controls cAMP Compartmentation and Oncogenic Signaling , 2020, Cell.

[3]  James T. Webber,et al.  Unbiased Proteomic Profiling Uncovers a Targetable GNAS/PKA/PP2A Axis in Small Cell Lung Cancer Stem Cells. , 2020, Cancer cell.

[4]  R. Schwabe,et al.  Cholesterol Stabilizes TAZ in Hepatocytes to Promote Experimental Non-alcoholic Steatohepatitis. , 2020, Cell metabolism.

[5]  J. Hong,et al.  The Fundamental Role of Bicarbonate Transporters and Associated Carbonic Anhydrase Enzymes in Maintaining Ion and pH Homeostasis in Non-Secretory Organs , 2020, International journal of molecular sciences.

[6]  R. Ghosh,et al.  Concerted localization-resets precede YAP-dependent transcription , 2019, Nature Communications.

[7]  A. Lyons,et al.  Use of p16 immunohistochemical stain to help differentiate inflamed melanocytic nevi from metastatic melanoma in the setting of immunotherapy. , 2019, Journal of the American Academy of Dermatology.

[8]  K. Harvey,et al.  The Hippo pathway oncoprotein YAP promotes melanoma cell invasion and spontaneous metastasis , 2019, bioRxiv.

[9]  D. McCollum,et al.  Control of cellular responses to mechanical cues through YAP/TAZ regulation , 2019, The Journal of Biological Chemistry.

[10]  Charlotte Soneson,et al.  Tximeta: Reference sequence checksums for provenance identification in RNA-seq , 2019, bioRxiv.

[11]  G. Baillie,et al.  Therapeutic targeting of 3′,5′-cyclic nucleotide phosphodiesterases: inhibition and beyond , 2019, Nature Reviews Drug Discovery.

[12]  S. Piccolo,et al.  YAP and TAZ: a signalling hub of the tumour microenvironment , 2019, Nature Reviews Cancer.

[13]  R. Stanton,et al.  The Warburg Effect, Lactate, and Nearly a Century of Trying to Cure Cancer. , 2019, Seminars in nephrology.

[14]  C. Thompson,et al.  Metabolic regulation of cell growth and proliferation , 2019, Nature Reviews Molecular Cell Biology.

[15]  C. Goding,et al.  MITF—the first 25 years , 2019, Genes & development.

[16]  M. Oren,et al.  New insights into YAP/TAZ nucleo‐cytoplasmic shuttling: new cancer therapeutic opportunities? , 2019, Molecular oncology.

[17]  Joshua M. Korn,et al.  Next-generation characterization of the Cancer Cell Line Encyclopedia , 2019, Nature.

[18]  Shannon M. White,et al.  YAP/TAZ Inhibition Induces Metabolic and Signaling Rewiring Resulting in Targetable Vulnerabilities in NF2-Deficient Tumor Cells. , 2019, Developmental cell.

[19]  C. Ettensohn,et al.  Genome-wide analysis of chromatin accessibility using ATAC-seq. , 2019, Methods in cell biology.

[20]  John M. Gaspar,et al.  NGmerge: merging paired-end reads via novel empirically-derived models of sequencing errors , 2018, BMC Bioinformatics.

[21]  K. Wakamatsu,et al.  Mammalian pigmentation is regulated by a distinct cAMP-dependent mechanism that controls melanosome pH , 2018, Science Signaling.

[22]  Mauro A. A. Castro,et al.  The chromatin accessibility landscape of primary human cancers , 2018, Science.

[23]  Xiaodong Zhang,et al.  The role of YAP/TAZ activity in cancer metabolic reprogramming , 2018, Molecular Cancer.

[24]  Carola Berking,et al.  Melanoma , 2018, The Lancet.

[25]  Ja Hyun Koo,et al.  Interplay between YAP/TAZ and Metabolism. , 2018, Cell metabolism.

[26]  Robert L. Judson,et al.  Bi-allelic Loss of CDKN2A Initiates Melanoma Invasion via BRN2 Activation. , 2018, Cancer cell.

[27]  Robert P. Jenkins,et al.  Quantitative Analysis Reveals that Actin and Src-Family Kinases Regulate Nuclear YAP1 and Its Export , 2018, Cell systems.

[28]  L. Bartova,et al.  International Union of Basic and Clinical Pharmacology CIV: The Neurobiology of Treatment-resistant Depression: From Antidepressant Classifications to Novel Pharmacological Targets , 2018, Pharmacological Reviews.

[29]  C. Steegborn,et al.  Pharmacological modulation of the CO2/HCO3-/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase. , 2018, Pharmacology & therapeutics.

[30]  Shu Kondo,et al.  Dynamic Fluctuations in Subcellular Localization of the Hippo Pathway Effector Yorkie In Vivo , 2018, Current Biology.

[31]  M. Mino‐Kenudson,et al.  Mutant GNAS drives pancreatic tumorigenesis by inducing PKA-mediated SIK suppression and reprogramming lipid metabolism , 2018, Nature Cell Biology.

[32]  Joseph G Ibrahim,et al.  Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences , 2018, bioRxiv.

[33]  M. Zaccolo,et al.  cAMP: From Long-Range Second Messenger to Nanodomain Signalling. , 2017, Trends in pharmacological sciences.

[34]  D. Navajas,et al.  Force Triggers YAP Nuclear Entry by Regulating Transport across Nuclear Pores , 2017, Cell.

[35]  L. Levin,et al.  Distinct intracellular sAC-cAMP domains regulate ER Ca2+ signaling and OXPHOS function , 2017, Journal of Cell Science.

[36]  O. Torres-Quesada,et al.  The many faces of compartmentalized PKA signalosomes. , 2017, Cellular signalling.

[37]  Nicholas A. Sinnott-Armstrong,et al.  An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues , 2017, Nature Methods.

[38]  William J. Greenleaf,et al.  chromVAR: Inferring transcription factor-associated accessibility from single-cell epigenomic data , 2017, Nature Methods.

[39]  Phillip G. Montgomery,et al.  Defining a Cancer Dependency Map , 2017, Cell.

[40]  D. Veesler,et al.  Local protein kinase A action proceeds through intact holoenzymes , 2017, Science.

[41]  J. Moyer,et al.  Contemporary Management of Early-Stage Melanoma: A Systematic Review , 2017, JAMA facial plastic surgery.

[42]  Davide Prandi,et al.  Personalized In Vitro and In Vivo Cancer Models to Guide Precision Medicine. , 2017, Cancer discovery.

[43]  L. Schad,et al.  Experimental and mathematical analysis of cAMP nanodomains , 2017, PloS one.

[44]  D. Cooper,et al.  Adenylyl cyclase signalling complexes – Pharmacological challenges and opportunities , 2017, Pharmacology & therapeutics.

[45]  C. Dessauer,et al.  International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases , 2017, Pharmacological Reviews.

[46]  Geet Duggal,et al.  Salmon: fast and bias-aware quantification of transcript expression using dual-phase inference , 2017, Nature Methods.

[47]  Rob Patro,et al.  Salmon provides fast and bias-aware quantification of transcript expression , 2017, Nature Methods.

[48]  A. Sboner,et al.  The metabolic/pH sensor soluble adenylyl cyclase is a tumor suppressor protein , 2016, Oncotarget.

[49]  Youshui Gao,et al.  Decreased extracellular pH inhibits osteogenesis through proton-sensing GPR4-mediated suppression of yes-associated protein , 2016, Scientific Reports.

[50]  S. M. Kim,et al.  Expression of soluble adenylyl cyclase in acral melanomas , 2016, Clinical and experimental dermatology.

[51]  C. Steegborn,et al.  Discovery of LRE1 as a specific and allosteric inhibitor of soluble adenylyl cyclase , 2016, Nature chemical biology.

[52]  B. Bastian,et al.  From melanocytes to melanomas , 2016, Nature Reviews Cancer.

[53]  J. Locasale,et al.  The Warburg Effect: How Does it Benefit Cancer Cells? , 2016, Trends in biochemical sciences.

[54]  Changqing Zhang,et al.  Proton-sensing GPCR-YAP Signalling Promotes Cancer-associated Fibroblast Activation of Mesenchymal Stem Cells , 2016, International journal of biological sciences.

[55]  Jun Yu,et al.  International Journal of Molecular Sciences the Tead Family and Its Oncogenic Role in Promoting Tumorigenesis , 2022 .

[56]  M. Robinson,et al.  Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences , 2015, F1000Research.

[57]  Bin Zhao,et al.  Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer , 2015, Cell.

[58]  O. Söderberg,et al.  Crosstalk between Hippo and TGFβ: Subcellular Localization of YAP/TAZ/Smad Complexes. , 2015, Journal of molecular biology.

[59]  Changqing Zhang,et al.  Proton-sensing GPCR-YAP Signalling Promotes Cell Proliferation and Survival , 2015, International journal of biological sciences.

[60]  Gavin Sherlock,et al.  Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions , 2015, bioRxiv.

[61]  Caren Waintraub,et al.  Investigation of cAMP microdomains as a path to novel cancer diagnostics. , 2014, Biochimica et biophysica acta.

[62]  A. Appukuttan,et al.  Role of soluble adenylyl cyclase in cell death and growth. , 2014, Biochimica et biophysica acta.

[63]  D. Fisher,et al.  The roles of microphthalmia-associated transcription factor and pigmentation in melanoma. , 2014, Archives of biochemistry and biophysics.

[64]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[65]  A. Zembowicz,et al.  Soluble Adenylyl Cyclase Antibody (R21) as a Diagnostic Adjunct in the Evaluation of Lentigo Maligna Margins During Slow Mohs Surgery , 2014, The American Journal of dermatopathology.

[66]  D. Cooper,et al.  Adenylate cyclase-centred microdomains. , 2014, The Biochemical journal.

[67]  Jonathan A. Cooper,et al.  Merlin/NF2 loss-driven tumorigenesis linked to CRL4(DCAF1)-mediated inhibition of the hippo pathway kinases Lats1 and 2 in the nucleus. , 2014, Cancer cell.

[68]  P. Tso,et al.  CO2/HCO3−- and calcium-regulated soluble adenylyl cyclase as a physiological ATP sensor. , 2014, The Journal of Biological Chemistry.

[69]  O. Abbas,et al.  Cutaneous Malignant Melanoma: Update on Diagnostic and Prognostic Biomarkers , 2014, The American Journal of dermatopathology.

[70]  H. Ke,et al.  Advances in targeting cyclic nucleotide phosphodiesterases , 2014, Nature Reviews Drug Discovery.

[71]  S. Hamilton-Dutoit,et al.  Immunohistochemical analysis of molecular drivers in melanoma identifies p16 as an independent prognostic biomarker , 2014, Journal of Clinical Pathology.

[72]  H. Tinsley,et al.  The Role of Cyclic Nucleotide Signaling Pathways in Cancer: Targets for Prevention and Treatment , 2014, Cancers.

[73]  Jung-Chin Chang,et al.  Role of the bicarbonate-responsive soluble adenylyl cyclase in pH sensing and metabolic regulation , 2014, Front. Physiol..

[74]  Raymond L. Barnhill,et al.  Pathology of melanocytic nevi and melanoma , 2014 .

[75]  Rajiv Narayan,et al.  A melanocyte lineage program confers resistance to MAP kinase pathway inhibition , 2013, Nature.

[76]  P. Tso,et al.  CO2/HCO3−- and Calcium-regulated Soluble Adenylyl Cyclase as a Physiological ATP Sensor* , 2013, The Journal of Biological Chemistry.

[77]  F. McCormick,et al.  MC1R and cAMP signaling inhibit cdc25B activity and delay cell cycle progression in melanoma cells , 2013, Proceedings of the National Academy of Sciences.

[78]  Robert Gentleman,et al.  Software for Computing and Annotating Genomic Ranges , 2013, PLoS Comput. Biol..

[79]  Jeffrey J. Saucerman,et al.  Corrigendum: Regulation of nuclear PKA revealed by spatiotemporal manipulation of cyclic AMP , 2013 .

[80]  Kun-Liang Guan,et al.  Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. , 2013, Genes & development.

[81]  H. Saya,et al.  cAMP/PKA signalling reinforces the LATS–YAP pathway to fully suppress YAP in response to actin cytoskeletal changes , 2013, The EMBO journal.

[82]  Hsuan-Cheng Huang,et al.  ValidNESs: a database of validated leucine-rich nuclear export signals , 2012, Nucleic Acids Res..

[83]  Justin Guinney,et al.  GSVA: gene set variation analysis for microarray and RNA-Seq data , 2013, BMC Bioinformatics.

[84]  Paolo Sassone-Corsi,et al.  The cyclic AMP pathway. , 2012, Cold Spring Harbor perspectives in biology.

[85]  Xiang-Dong Fu,et al.  Regulation of the Hippo-YAP Pathway by G-Protein-Coupled Receptor Signaling , 2012, Cell.

[86]  P. Codogno,et al.  Autophagy Is a Protective Mechanism for Human Melanoma Cells under Acidic Stress* , 2012, The Journal of Biological Chemistry.

[87]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[88]  C. Magro,et al.  Soluble adenylyl cyclase antibody profile as a diagnostic adjunct in the assessment of pigmented lesions. , 2012, Archives of dermatology.

[89]  Davis J. McCarthy,et al.  Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation , 2012, Nucleic acids research.

[90]  M. Zaccolo Spatial control of cAMP signalling in health and disease. , 2011, Current opinion in pharmacology.

[91]  M. Tresguerres,et al.  Intracellular cAMP signaling by soluble adenylyl cyclase. , 2011, Kidney international.

[92]  H. Kleinman,et al.  Multiple uses of basement membrane‐like matrix (BME/Matrigel) in vitro and in vivo with cancer cells , 2011, International journal of cancer.

[93]  M. Nowycky,et al.  Exchange protein directly activated by cyclic AMP increases melanoma cell migration by a Ca2+-dependent mechanism. , 2010, Cancer research.

[94]  Matthew D. Wilkerson,et al.  ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking , 2010, Bioinform..

[95]  K. Guan,et al.  A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). , 2010, Genes & development.

[96]  E. Schon,et al.  Modulation of mitochondrial protein phosphorylation by soluble adenylyl cyclase ameliorates cytochrome oxidase defects , 2009, EMBO molecular medicine.

[97]  Jin Zhang,et al.  The role of membrane microdomains in shaping beta2-adrenergic receptor-mediated cAMP dynamics. , 2009, Molecular bioSystems.

[98]  Robert Gentleman,et al.  rtracklayer: an R package for interfacing with genome browsers , 2009, Bioinform..

[99]  R. Acín-Pérez,et al.  Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. , 2009, Cell metabolism.

[100]  S. Naderi,et al.  EBV infection renders B cells resistant to growth inhibition via adenylyl cyclase. , 2008, Cellular signalling.

[101]  Li Li,et al.  Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. , 2007, Genes & development.

[102]  A. Wittinghofer,et al.  Capturing cyclic nucleotides in action: snapshots from crystallographic studies , 2007, Nature Reviews Molecular Cell Biology.

[103]  V. Sondak,et al.  The impact of factors beyond Breslow depth on predicting sentinel lymph node positivity in melanoma , 2007, Cancer.

[104]  D. Schadendorf,et al.  Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. , 2006, Pigment cell research.

[105]  Andrew J. Crossthwaite,et al.  Higher-order organization and regulation of adenylyl cyclases. , 2006, Trends in pharmacological sciences.

[106]  A. Floore,et al.  Tamoxifen resistance by a conformational arrest of the estrogen receptor alpha after PKA activation in breast cancer. , 2004, Cancer cell.

[107]  L. Levin,et al.  Bicarbonate-responsive “soluble” adenylyl cyclase defines a nuclear cAMP microdomain , 2004, The Journal of cell biology.

[108]  L. Levin,et al.  Compartmentalization of bicarbonate‐sensitive adenylyl cyclase in distinct signaling microdomains , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[109]  J. Beavo,et al.  Cyclic nucleotide research — still expanding after half a century , 2002, Nature Reviews Molecular Cell Biology.

[110]  Tullio Pozzan,et al.  Discrete Microdomains with High Concentration of cAMP in Stimulated Rat Neonatal Cardiac Myocytes , 2002, Science.

[111]  L. Levin,et al.  CO2/HCO3 −-responsive soluble adenylyl cyclase as a putative metabolic sensor , 2001, Trends in Endocrinology & Metabolism.

[112]  J. Billiard,et al.  Hormonal Control of Insulin-like Growth Factor I Gene Transcription in Human Osteoblasts , 2001, The Journal of Biological Chemistry.

[113]  M. Cann,et al.  Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. , 2000, Science.

[114]  M. Cann,et al.  Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[115]  Roger Y Tsien,et al.  Identification of a signal for rapid export of proteins from the nucleus , 1995, Cell.

[116]  C. Dang,et al.  Identification of the human c-myc protein nuclear translocation signal , 1988, Molecular and cellular biology.

[117]  G. Poste,et al.  Experimental metastasis correlates with cyclic AMP accumulation in B16 melanoma clones , 1984, Nature.