A Comparison of Visualizations for Identifying Correlation over Space and Time

Observing the relationship between two or more variables over space and time is essential in many domains. For instance, looking, for different countries, at the evolution of both the life expectancy at birth and the fertility rate will give an overview of their demographics. The choice of visual representation for such multivariate data is key to enabling analysts to extract patterns and trends. Prior work has compared geo-temporal visualization techniques for a single thematic variable that evolves over space and time, or for two variables at a specific point in time. But how effective visualization techniques are at communicating correlation between two variables that evolve over space and time remains to be investigated. We report on a study comparing three techniques that are representative of different strategies to visualize geo-temporal multivariate data: either juxtaposing all locations for a given time step, or juxtaposing all time steps for a given location; and encoding thematic attributes either using symbols overlaid on top of map features, or using visual channels of the map features themselves. Participants performed a series of tasks that required them to identify if two variables were correlated over time and if there was a pattern in their evolution. Tasks varied in granularity for both dimensions: time (all time steps, a subrange of steps, one step only) and space (all locations, locations in a subregion, one location only). Our results show that a visualization's effectiveness depends strongly on the task to be carried out. Based on these findings we present a set of design guidelines about geo-temporal visualization techniques for communicating correlation.

[1]  Robert S. Laramee,et al.  Dynamic Choropleth Maps – Using Amalgamation to Increase Area Perceivability , 2018, 2018 22nd International Conference Information Visualisation (IV).

[2]  Néna Roa-Seïler,et al.  Animated Geo-temporal Clusters for Exploratory Search in Event Data Document Collections , 2014, 2014 18th International Conference on Information Visualisation.

[3]  Steven Franconeri,et al.  Ranking Visualizations of Correlation Using Weber's Law , 2014, IEEE Transactions on Visualization and Computer Graphics.

[4]  Pierre Dragicevic,et al.  Fair Statistical Communication in HCI , 2016 .

[5]  David S. Ebert,et al.  TopoGroups: Context-Preserving Visual Illustration of Multi-Scale Spatial Aggregates , 2017, CHI.

[6]  Sabrina Nusrat,et al.  Cartogram Visualization for Bivariate Geo-Statistical Data , 2018, IEEE Transactions on Visualization and Computer Graphics.

[7]  Pierre Dragicevic,et al.  A Declarative Rendering Model for Multiclass Density Maps , 2019, IEEE Transactions on Visualization and Computer Graphics.

[8]  Martin Krzywinski,et al.  Points of Significance: Error bars , 2013, Nature Methods.

[9]  Matthew O. Ward,et al.  Interactive Data Visualization - Foundations, Techniques, and Applications , 2010 .

[10]  G. Cumming,et al.  Inference by eye: confidence intervals and how to read pictures of data. , 2005, The American psychologist.

[11]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[12]  Ji Hwan Park,et al.  GeoBrick: exploration of spatiotemporal data , 2019, The Visual Computer.

[13]  Martin E. Elmer Symbol Considerations for Bivariate Thematic Maps , 2013 .

[14]  Sara Irina Fabrikant,et al.  Empirical study of cartograms , 2011 .

[15]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[16]  Ben Shneiderman,et al.  Why Not Make Interfaces Better than 3D Reality? , 2003, IEEE Computer Graphics and Applications.

[17]  Jarke J. van Wijk,et al.  Non-overlapping Aggregated Multivariate Glyphs for Moving Objects , 2014, 2014 IEEE Pacific Visualization Symposium.

[18]  John T. Stasko,et al.  Effectiveness of Animation in Trend Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[19]  Christophe Hurter,et al.  Animations 25 Years Later: New Roles and Opportunities , 2016, AVI.

[20]  Jie Li,et al.  An Interactive Radial Visualization of Geoscience Observation Data , 2015, VINCI.

[21]  Ronald A. Rensink,et al.  Correlation Judgment and Visualization Features: A Comparative Study , 2019, IEEE Transactions on Visualization and Computer Graphics.

[22]  Wouter Meulemans,et al.  Map LineUps: Effects of spatial structure on graphical inference , 2017, IEEE Transactions on Visualization and Computer Graphics.

[23]  Aidan Slingsby,et al.  Tilemaps for Summarising Multivariate Geographical Variation , 2018 .

[24]  Jochen Schiewe Task-Oriented Visualization Approaches for Landscape and Urban Change Analysis , 2018, ISPRS Int. J. Geo Inf..

[25]  Liqiu Meng,et al.  Visual Analysis for Nowcasting of Multidimensional Lightning Data , 2013, ISPRS Int. J. Geo Inf..

[26]  Victoria Interrante,et al.  Weaving Versus Blending: a quantitative assessment of the information carrying capacities of two alternative methods for conveying multivariate data with color. , 2006, IEEE Transactions on Visualization and Computer Graphics.

[27]  Kang Zhang,et al.  Metaphoric Transfer Effect in Information Visualization Using Glyphs , 2015, VINCI.

[28]  Mark A. Livingston,et al.  Evaluation of Trend Localization with Multi-Variate Visualizations , 2011, IEEE Transactions on Visualization and Computer Graphics.

[29]  Alan M. MacEachren,et al.  A Comparison of Animated Maps with Static Small-Multiple Maps for Visually Identifying Space-Time Clusters , 2006 .

[30]  D. Dorling Area Cartograms: Their Use and Creation , 2011 .

[31]  Zhu Xu,et al.  Experimental Evaluation of the Usability of Cartogram for Representation of GlobeLand30 Data , 2017, ISPRS Int. J. Geo Inf..

[32]  T. Perneger What's wrong with Bonferroni adjustments , 1998, BMJ.

[33]  Ronald A. Rensink The nature of correlation perception in scatterplots , 2016, Psychonomic bulletin & review.

[34]  Robert S. Laramee,et al.  When Size Matters: Towards Evaluating Perceivability of Choropleths , 2018, CGVC.

[35]  Heidrun Schumann,et al.  Visualizing abstract data on maps , 2004, Proceedings. Eighth International Conference on Information Visualisation, 2004. IV 2004..

[36]  Gennady L. Andrienko,et al.  Interactive analysis of event data using space-time cube , 2004, Proceedings. Eighth International Conference on Information Visualisation, 2004. IV 2004..

[37]  Jin Chen,et al.  A Visualization System for Space-Time and Multivariate Patterns (VIS-STAMP) , 2006, IEEE Transactions on Visualization and Computer Graphics.

[38]  Heidrun Schumann,et al.  3D information visualization for time dependent data on maps , 2005, Ninth International Conference on Information Visualisation (IV'05).

[39]  Stephen G. Kobourov,et al.  Analyzing the Evolution of the Internet , 2015, EuroVis.

[40]  Herman Chernoff,et al.  The Use of Faces to Represent Points in k- Dimensional Space Graphically , 1973 .

[41]  David S. Ebert,et al.  Data Flow Analysis and Visualization for Spatiotemporal Statistical Data without Trajectory Information , 2018, IEEE Transactions on Visualization and Computer Graphics.

[42]  Ronald A. Rensink,et al.  The Perception of Correlation in Scatterplots , 2010, Comput. Graph. Forum.

[43]  Stephen G. Kobourov,et al.  Quantitative Measures for Cartogram Generation Techniques , 2015, Comput. Graph. Forum.

[44]  G. Cumming,et al.  The New Statistics , 2014, Psychological science.

[45]  Jason Dykes,et al.  Visualizing Multiple Variables Across Scale and Geography , 2016, IEEE Transactions on Visualization and Computer Graphics.

[46]  Mark A. Livingston,et al.  Evaluation of multivariate visualizations: a case study of refinements and user experience , 2012, Visualization and Data Analysis.

[47]  Alexander Klippel,et al.  Interpreting Spatial Patterns: An Inquiry Into Formal and Cognitive Aspects of Tobler's First Law of Geography , 2011 .

[48]  Stephen G. Kobourov,et al.  The State of the Art in Cartograms , 2016, Comput. Graph. Forum.

[49]  Mark Harrower,et al.  The Cognitive Limits of Animated Maps , 2007, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[50]  David S. Ebert,et al.  Bristle Maps: A Multivariate Abstraction Technique for Geovisualization , 2013, IEEE Transactions on Visualization and Computer Graphics.

[51]  Zhilin Li,et al.  Effectiveness of Cartogram for the Representation of Spatial Data , 2010 .

[52]  Tomoki Nakaya,et al.  Visualising Crime Clusters in a Space‐time Cube: An Exploratory Data‐analysis Approach Using Space‐time Kernel Density Estimation and Scan Statistics , 2010, Trans. GIS.

[53]  Lei Ren,et al.  Banded choropleth map , 2018, Personal and Ubiquitous Computing.

[54]  Denis Lalanne,et al.  A Qualitative Study on the Exploration of Temporal Changes in Flow Maps with Animation and Small‐Multiples , 2012, Comput. Graph. Forum.

[55]  HeerJeffrey,et al.  D3 Data-Driven Documents , 2011 .

[56]  Robert E. Roth,et al.  An Empirically-Derived Taxonomy of Interaction Primitives for Interactive Cartography and Geovisualization , 2013, IEEE Transactions on Visualization and Computer Graphics.

[57]  Chris North,et al.  Single complex glyphs versus multiple simple glyphs , 2005, CHI Extended Abstracts.

[58]  Zhilin Li,et al.  Usability of value-by-alpha maps compared to area cartograms and proportional symbol maps , 2019 .

[59]  Gennady L. Andrienko,et al.  Interactive visual tools to explore spatio-temporal variation , 2004, AVI.

[60]  Stephen G. Kobourov,et al.  Evaluating Cartogram Effectiveness , 2015, IEEE Transactions on Visualization and Computer Graphics.

[61]  D. Peuquet It's About Time: A Conceptual Framework for the Representation of Temporal Dynamics in Geographic Information Systems , 1994 .

[62]  Kirk Goldsberry,et al.  Change Blindness in Animated Choropleth Maps: An Empirical Study , 2011 .

[63]  P. Kennelly,et al.  Illuminated Choropleth Maps , 2010 .

[64]  Menno-Jan Kraak,et al.  The space - time cube revisited from a geovisualization perspective , 2003 .

[65]  Barbara Tversky,et al.  Animation: can it facilitate? , 2002, Int. J. Hum. Comput. Stud..

[66]  Judith A. Tyner Principles of Map Design , 2010 .

[67]  Alex T. Pang,et al.  Glyphs for Visualizing Uncertainty in Vector Fields , 1996, IEEE Trans. Vis. Comput. Graph..

[68]  Jeffrey Heer,et al.  Beyond Weber's Law: A Second Look at Ranking Visualizations of Correlation , 2016, IEEE Transactions on Visualization and Computer Graphics.

[69]  Arvind Satyanarayan,et al.  Reactive Vega: A Streaming Dataflow Architecture for Declarative Interactive Visualization , 2016, IEEE Transactions on Visualization and Computer Graphics.

[70]  Li An,et al.  Space–Time Analysis: Concepts, Quantitative Methods, and Future Directions , 2015 .

[71]  Robert L. Harris,et al.  Information Graphics: A Comprehensive Illustrated Reference , 1996 .