Semi‐Global Output Feedback Stabilization for a Class of Uncertain Nonlinear Systems

This paper addresses the problem of semi-global stabilization by output feedback for a class of nonlinear systems whose output gains are unknown. For each subsystem, we first design a state compensator and use the compensator states to construct a control law to stabilize the nominal linear system without the perturbing nonlinearities. Then, combining the output feedback domination approach with block-backstepping scheme, a series of homogeneous output feedback controllers are constructed recursively for each subsystem and the closed-loop system is rendered semi-globally asymptotically stable.

[1]  Alessandro Astolfi,et al.  High gain observers with updated gain and homogeneous correction terms , 2009, Autom..

[2]  Chunjiang Qian,et al.  Semi-global stabilization of a class of uncertain nonlinear systems by linear output feedback , 2005, IEEE Trans. Circuits Syst. II Express Briefs.

[3]  L. Rosier Homogeneous Lyapunov function for homogeneous continuous vector field , 1992 .

[4]  Junyong Zhai,et al.  Global finite-time stabilization via output feedback for upper-triangular systems with unknown output gain , 2010, 49th IEEE Conference on Decision and Control (CDC).

[5]  Wei Lin,et al.  Semi-global robust stabilization of MIMO nonlinear systems by partial state and dynamic output feedback , 2001, Autom..

[6]  Chunjiang Qian,et al.  A homogeneous domination approach for global output feedback stabilization of a class of nonlinear systems , 2005, Proceedings of the 2005, American Control Conference, 2005..

[7]  H. Khalil,et al.  Output feedback stabilization of fully linearizable systems , 1992 .

[8]  Jie Huang,et al.  GLOBAL ROBUST SERVOMECHANISM OF A CLASS OF NONLINEAR SYSTEMS USING OUTPUT FEEDBACK , 2007 .

[9]  Shihong Ding,et al.  Global stabilization of partially linear composite systems using homogeneous method , 2011 .

[10]  Alberto Isidori,et al.  Adaptive Dynamic Output Feedback Stabilisation of Nonlinear Systems , 2002 .

[11]  Alessandro Astolfi,et al.  Homogeneous Approximation, Recursive Observer Design, and Output Feedback , 2008, SIAM J. Control. Optim..

[12]  Wei Lin,et al.  Output feedback control of a class of nonlinear systems: a nonseparation principle paradigm , 2002, IEEE Trans. Autom. Control..

[13]  A. Teel,et al.  Tools for Semiglobal Stabilization by Partial State and Output Feedback , 1995 .

[14]  H. Khalil,et al.  Semiglobal stabilization of a class of nonlinear systems using output feedback , 1993, IEEE Trans. Autom. Control..

[15]  Salwa Elloumi,et al.  H infinity decentralized observation and control of nonlinear interconnected systems. , 2009, ISA transactions.

[16]  Yanjun Shen,et al.  Semi‐global finite‐time observers for multi‐output nonlinear systems , 2010 .

[17]  A. Teel,et al.  Global stabilizability and observability imply semi-global stabilizability by output feedback , 1994 .

[18]  Yungang Liu,et al.  Adaptive output feedback control for a class of planar nonlinear systems , 2009 .

[19]  Zongli Lin,et al.  Robust semiglobal stabilization of minimum-phase input-output linearizable systems via partial state and output feedback , 1995, IEEE Trans. Autom. Control..

[20]  Hyo-Sung Ahn,et al.  Special issue on “iterative learning control” , 2011 .

[21]  Hui Ye,et al.  Semiglobal Output Feedback Stabilization of a Generalized Class of MIMO Nonlinear Systems , 2011 .

[22]  H. Shim,et al.  Semi-global observer for multi-output nonlinear systems , 2001 .

[23]  W. Dayawansa,et al.  Global stabilization by output feedback: examples and counterexamples , 1994 .

[24]  Youyi Wang,et al.  Robust decentralized control for multimachine power systems , 1998 .