Parkin Protects against LRRK2 G2019S Mutant-Induced Dopaminergic Neurodegeneration in Drosophila

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are currently recognized as the most common genetic cause of parkinsonism. Among the large number of LRRK2 mutations identified to date, the G2019S variant is the most common. In Asia, however, another LRRK2 variant, G2385R, appears to occur more frequently. To better understand the contribution of different LRRK2 variants toward disease pathogenesis, we generated transgenic Drosophila over-expressing various human LRRK2 alleles, including wild type, G2019S, Y1699C, and G2385R LRRK2. We found that transgenic flies harboring G2019S, Y1699C, or G2385R LRRK2 variant, but not the wild-type protein, exhibit late-onset loss of dopaminergic (DA) neurons in selected clusters that is accompanied by locomotion deficits. Furthermore, LRRK2 mutant flies also display reduced lifespan and increased sensitivity to rotenone, a mitochondrial complex I inhibitor. Importantly, coexpression of human parkin in LRRK2 G2019S-expressing flies provides significant protection against DA neurodegeneration that occurs with age or in response to rotenone. Together, our results suggest a potential link between LRRK2, parkin, and mitochondria in the pathogenesis of LRRK2-related parkinsonism.

[1]  Houeto Jean-Luc [Parkinson's disease]. , 2022, La Revue du praticien.

[2]  K. Lim,et al.  Genetic models of Parkinson disease. , 2009, Biochimica et biophysica acta.

[3]  T. Dawson,et al.  What causes cell death in Parkinson's disease? , 2008, Annals of neurology.

[4]  R. Takahashi,et al.  Phosphorylation of 4E‐BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila , 2008, The EMBO journal.

[5]  A. Schapira,et al.  Uniting Chinese across Asia: the LRRK2 Gly2385Arg risk variant , 2008, European journal of neurology.

[6]  C. Ross,et al.  A Drosophila model for LRRK2-linked parkinsonism , 2008, Proceedings of the National Academy of Sciences.

[7]  T. Dawson,et al.  DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase , 2007, Proceedings of the National Academy of Sciences.

[8]  Ruifeng Lu,et al.  Drosophila Overexpressing Parkin R275W Mutant Exhibits Dopaminergic Neuron Degeneration and Mitochondrial Abnormalities , 2007, The Journal of Neuroscience.

[9]  Jongkyeong Chung,et al.  Loss of LRRK2/PARK8 induces degeneration of dopaminergic neurons in Drosophila. , 2007, Biochemical and biophysical research communications.

[10]  George R Jackson,et al.  A Drosophila Model of Mutant Human Parkin-Induced Toxicity Demonstrates Selective Loss of Dopaminergic Neurons and Dependence on Cellular Dopamine , 2007, The Journal of Neuroscience.

[11]  K. Lim,et al.  Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. , 2007, Human molecular genetics.

[12]  A. Abeliovich,et al.  The Familial Parkinsonism Gene LRRK2 Regulates Neurite Process Morphology , 2006, Neuron.

[13]  P. Emson,et al.  Localization of LRRK2 to membranous and vesicular structures in mammalian brain , 2006, Annals of neurology.

[14]  C. Ross,et al.  Kinase activity of mutant LRRK2 mediates neuronal toxicity , 2006, Nature Neuroscience.

[15]  David W. Miller,et al.  Kinase activity is required for the toxic effects of mutant LRRK2/dardarin , 2006, Neurobiology of Disease.

[16]  P. Pollak,et al.  LRRK2 G2019S as a cause of Parkinson's disease in North African Arabs. , 2006, The New England journal of medicine.

[17]  Andrew B West,et al.  Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Olga Pletnikova,et al.  Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin's protective function. , 2005, Human molecular genetics.

[19]  C. Ross,et al.  Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. C. Greene,et al.  Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  S. Birman,et al.  Chronic Exposure to Rotenone Models Sporadic Parkinson's Disease in Drosophila melanogaster , 2004, The Journal of Neuroscience.

[22]  Andrew Lees,et al.  Cloning of the Gene Containing Mutations that Cause PARK8-Linked Parkinson's Disease , 2004, Neuron.

[23]  Thomas Meitinger,et al.  Mutations in LRRK2 Cause Autosomal-Dominant Parkinsonism with Pleomorphic Pathology , 2004, Neuron.