TopR2, the second reverse gyrase of Sulfolobus solfataricus, exhibits unusual properties.

[1]  C. Capp,et al.  Separate and Combined Biochemical Activities of the Subunits of a Naturally Split Reverse Gyrase* , 2010, The Journal of Biological Chemistry.

[2]  S. d'Auria,et al.  The Archaeal Topoisomerase Reverse Gyrase Is a Helix-destabilizing Protein That Unwinds Four-way DNA Junctions* , 2010, The Journal of Biological Chemistry.

[3]  T. Hsieh,et al.  Helicase-appended Topoisomerases: New Insight into the Mechanism of Directional Strand Transfer* , 2009, The Journal of Biological Chemistry.

[4]  M. Rossi,et al.  Inhibition of translesion DNA polymerase by archaeal reverse gyrase , 2009, Nucleic acids research.

[5]  M. Rossi,et al.  Reverse gyrase and genome stability in hyperthermophilic organisms. , 2009, Biochemical Society transactions.

[6]  J. Eisen,et al.  Adaptations to Submarine Hydrothermal Environments Exemplified by the Genome of Nautilia profundicola , 2009, PLoS genetics.

[7]  K. Neuman,et al.  Mutational Analysis of the Helicase-like Domain of Thermotoga maritima Reverse Gyrase* , 2008, Journal of Biological Chemistry.

[8]  M. Nadal,et al.  Transcriptional analysis of the two reverse gyrase encoding genes of Sulfolobus solfataricus P2 in relation to the growth phases and temperature conditions , 2008, Extremophiles.

[9]  M. Rossi,et al.  Dissection of reverse gyrase activities: insight into the evolution of a thermostable molecular machine† , 2008, Nucleic acids research.

[10]  D. Klostermeier,et al.  Adenosine 5'-O-(3-thio)triphosphate (ATPgammaS) promotes positive supercoiling of DNA by T. maritima reverse gyrase. , 2007, Journal of molecular biology.

[11]  Patrick Forterre,et al.  The origin of modern terrestrial life , 2007, HFSP journal.

[12]  M. Nadal Reverse gyrase: an insight into the role of DNA-topoisomerases. , 2007, Biochimie.

[13]  R. Bernander,et al.  Genome-wide transcription map of an archaeal cell cycle , 2007, Proceedings of the National Academy of Sciences.

[14]  H. Tanabe,et al.  Bloom Helicase and DNA Topoisomerase IIIα Are Involved in the Dissolution of Sister Chromatids , 2006, Molecular and Cellular Biology.

[15]  Li Huang,et al.  Oligonucleotide cleavage and rejoining by topoisomerase III from the hyperthermophilic archaeon Sulfolobus solfataricus: temperature dependence and strand annealing‐promoted DNA religation , 2006, Molecular microbiology.

[16]  T. Hsieh,et al.  Reverse Gyrase Functions as a DNA Renaturase , 2006, Journal of Biological Chemistry.

[17]  E. L. Zechiedrich,et al.  A role for topoisomerase III in a recombination pathway alternative to RuvABC , 2005, Molecular microbiology.

[18]  C. Capp,et al.  Nucleotide- and Stoichiometry-dependent DNA Supercoiling by Reverse Gyrase* , 2005, Journal of Biological Chemistry.

[19]  M. Rossi,et al.  Functional interaction of reverse gyrase with single-strand binding protein of the archaeon Sulfolobus , 2005, Nucleic acids research.

[20]  M. Rossi,et al.  Reverse Gyrase Recruitment to DNA after UV Light Irradiation in Sulfolobus solfataricus* , 2004, Journal of Biological Chemistry.

[21]  H. Atomi,et al.  Reverse Gyrase Is Not a Prerequisite for Hyperthermophilic Life , 2004, Journal of bacteriology.

[22]  J. Berger,et al.  Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. , 2004, Annual review of biophysics and biomolecular structure.

[23]  Li Huang,et al.  DNA Topoisomerase III from the Hyperthermophilic Archaeon Sulfolobus solfataricus with Specific DNA Cleavage Activity , 2003, Journal of bacteriology.

[24]  M. Duguet,et al.  Thermophilic topoisomerase I on a single DNA molecule. , 2003, Journal of molecular biology.

[25]  A. C. Rodríguez,et al.  Investigating the role of the latch in the positive supercoiling mechanism of reverse gyrase. , 2003, Biochemistry.

[26]  A. C. Rodríguez,et al.  Studies of a Positive Supercoiling Machine , 2002, The Journal of Biological Chemistry.

[27]  JAMES C. Wang,et al.  Cellular roles of DNA topoisomerases: a molecular perspective , 2002, Nature Reviews Molecular Cell Biology.

[28]  Patrick Forterre,et al.  A hot story from comparative genomics: reverse gyrase is the only hyperthermophile-specific protein. , 2002, Trends in genetics : TIG.

[29]  S. Shuman,et al.  A poxvirus-like type IB topoisomerase family in bacteria , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[30]  P. Pongpech,et al.  Type I topoisomerase activity is required for proper chromosomal segregation in Escherichia coli , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  A. Déclais,et al.  Reverse Gyrase, the Two Domains Intimately Cooperate to Promote Positive Supercoiling* , 2000, The Journal of Biological Chemistry.

[32]  Y. Tse‐Dinh Bacterial and archeal type I topoisomerases. , 1998, Biochimica et biophysica acta.

[33]  Wei Li,et al.  Mammalian DNA topoisomerase IIIα is essential in early embryogenesis , 1998 .

[34]  M. Duguet,et al.  Reverse Gyrase from the Hyperthermophilic BacteriumThermotoga maritima: Properties and Gene Structure , 1998, Journal of bacteriology.

[35]  C. Jaxel,et al.  Reverse gyrase gene from Sulfolobus shibatae B12: gene structure, transcription unit and comparative sequence analysis of the two domains. , 1996, Nucleic acids research.

[36]  A. Slesarev,et al.  A two-subunit type I DNA topoisomerase (reverse gyrase) from an extreme hyperthermophile. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[37]  C. Jaxel,et al.  Purification and characterization of reverse gyrase from Sulfolobus shibatae. Its proteolytic product appears as an ATP-independent topoisomerase. , 1994, The Journal of biological chemistry.

[38]  H. Hiasa,et al.  Decatenating activity of Escherichia coli DNA gyrase and topoisomerases I and III during oriC and pBR322 DNA replication in vitro. , 1994, The Journal of biological chemistry.

[39]  P. Forterre,et al.  Reverse gyrase: a helicase-like domain and a type I topoisomerase in the same polypeptide. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. Duguet,et al.  The helical repeat of DNA at high temperature. , 1993, Nucleic acids research.

[41]  R. Huber,et al.  Reverse gyrase in thermophilic eubacteria , 1991, Journal of bacteriology.

[42]  P. Forterre,et al.  Reverse gyrase, a hallmark of the hyperthermophilic archaebacteria , 1990, Journal of bacteriology.

[43]  P. Forterre,et al.  Reverse gyrase binding to DNA alters the double helix structure and produces single‐strand cleavage in the absence of ATP. , 1989, The EMBO journal.

[44]  P. Forterre,et al.  Reverse gyrase of Sulfolobus: purification to homogeneity and characterization. , 1988, Biochemistry.

[45]  Marc Nadal,et al.  Positively supercoiled DNA in a virus-like particle of an archaebacterium , 1986, Nature.

[46]  A. Kikuchi,et al.  Reverse gyrase; ATP‐dependent type I topoisomerase from Sulfolobus , 1985, The EMBO journal.

[47]  P. Forterre,et al.  High positive supercoiling in vitro catalyzed by an ATP and polyethylene glycol‐stimulated topoisomerase from Sulfolobus acidocaldarius. , 1985, The EMBO journal.

[48]  A. Kikuchi,et al.  Reverse gyrase—a topoisomerase which introduces positive superhelical turns into DNA , 1984, Nature.

[49]  A. Kornberg,et al.  An Escherichia coli mutant defective in single-strand binding protein is defective in DNA replication. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[50]  P. Forterre,et al.  Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers. , 2007, Archaea.

[51]  M. Kampmann,et al.  Reverse gyrase has heat-protective DNA chaperone activity independent of supercoiling. , 2004, Nucleic acids research.

[52]  J. Champoux DNA topoisomerases: structure, function, and mechanism. , 2001, Annual review of biochemistry.