Releases of the parasitoid Pachycrepoideus vindemmiae for augmentative biological control of spotted wing drosophila, Drosophila suzukii

[1]  J. Collatz,et al.  Flowers and fruits prolong survival of drosophila pupal parasitoids , 2021 .

[2]  OUP accepted manuscript , 2021, Journal of Economic Entomology.

[3]  Ferdinand Pfab,et al.  Timing and order of different insecticide classes drive control of Drosophila suzukii; a modeling approach , 2020, Journal of Pest Science.

[4]  Xingeng Wang,et al.  Plasticity of Body Growth and Development in Two Cosmopolitan Pupal Parasitoids , 2020 .

[5]  K. Haddi,et al.  First record of the invasive spotted wing Drosophila infesting berry crops in Africa , 2020 .

[6]  P. Cai,et al.  Life History and Host Preference of Trichopria drosophilae from Southern China, One of the Effective Pupal Parasitoids on the Drosophila Species , 2020, Insects.

[7]  Xingeng Wang,et al.  Biological Control of Spotted-Wing Drosophila: An Update on Promising Agents , 2020 .

[8]  J. Collatz,et al.  Trichopria drosophilae parasitizes Drosophila suzukii in seven common non-crop fruits , 2019, Journal of Pest Science.

[9]  J. Sánchez-González,et al.  Single and Combined Release of Trichopria drosophilae (Hymenoptera: Diapriidae) to Control Drosophila suzukii (Diptera: Drosophilidae) , 2019, Neotropical Entomology.

[10]  V. Walton,et al.  Factors affecting the biology of Pachycrepoideus vindemmiae (Hymenoptera: Pteromalidae), a parasitoid of spotted-wing drosophila (Drosophila suzukii) , 2019, PloS one.

[11]  Xingeng Wang,et al.  Temporal Dynamics of Host Use by Drosophila suzukii in California’s San Joaquin Valley: Implications for Area-Wide Pest Management , 2019, Insects.

[12]  J. Collatz,et al.  Influence of the Rearing Host on Biological Parameters of Trichopria drosophilae, a Potential Biological Control Agent of Drosophila suzukii , 2019, Insects.

[13]  V. Fournier,et al.  Ability of Muscidifurax raptorellus and Other Parasitoids and Predators to Control Drosophila suzukii Populations in Raspberries in the Laboratory , 2019, Insects.

[14]  F. Zalom,et al.  Identification and risk assessment of spinosad resistance in a California population of Drosophila suzukii. , 2018, Pest management science.

[15]  R. Isaacs,et al.  Biological Control of Spotted-Wing Drosophila (Diptera: Drosophilidae)—Current and Pending Tactics , 2019, Journal of Integrated Pest Management.

[16]  Xingeng Wang,et al.  Exploration for native parasitoids of Drosophila suzukii in China reveals a diversity of parasitoid species and narrow host range of the dominant parasitoid , 2018, Journal of Pest Science.

[17]  G. Anfora,et al.  Augmentative releases of Trichopria drosophilae for the suppression of early season Drosophila suzukii populations , 2018, BioControl.

[18]  Daniel Bernardi,et al.  A Phylogeographic Approach to the Drosophila suzukii (Diptera: Drosophilidae) Invasion in Brazil , 2018, Journal of Economic Entomology.

[19]  L. Marini,et al.  Habitat preference of Drosophila suzukii across heterogeneous landscapes , 2018, Journal of Pest Science.

[20]  Jian-hua Huang,et al.  Biocontrol characteristics of the fruit fly pupal parasitoid Trichopria drosophilae (Hymenoptera: Diapriidae) emerging from different hosts , 2018, Scientific Reports.

[21]  D. Mazzi,et al.  Spotted Wing Drosophila in Sweet Cherry Orchards in Relation to Forest Characteristics, Bycatch, and Resource Availability , 2018, Insects.

[22]  P. Girod,et al.  The parasitoid complex of D. suzukii and other fruit feeding Drosophila species in Asia , 2018, Scientific Reports.

[23]  R. Foster,et al.  Tailoring insect biocontrol for high tunnels , 2018, Biological Control.

[24]  L. Marini,et al.  Spillover of Drosophila suzukii between noncrop and crop areas: implications for pest management , 2018, Agricultural and Forest Entomology.

[25]  Xingeng Wang,et al.  Thermal Performance of Two Indigenous Pupal Parasitoids Attacking the Invasive Drosophila suzukii (Diptera: Drosophilidae) , 2018, Environmental Entomology.

[26]  C. Carli,et al.  Host location and dispersal ability of the cosmopolitan parasitoid Trichopria drosophilae released to control the invasive spotted wing Drosophila , 2018 .

[27]  J. Michaud Problems Inherent to Augmentation of Natural Enemies in Open Agriculture , 2018, Neotropical Entomology.

[28]  G. Anfora,et al.  Comparative life history traits of indigenous Italian parasitoids of Drosophila suzukii and their effectiveness at different temperatures , 2017 .

[29]  R. Foster,et al.  High tunnels: protection for rather than from insect pests? , 2017, Pest management science.

[30]  Xingeng Wang,et al.  Linear functional response by two pupal Drosophila parasitoids foraging within single or multiple patch environments , 2017, PloS one.

[31]  Jeffrey C. Williams,et al.  Economic analysis of revenue losses and control costs associated with the spotted wing drosophila, Drosophila suzukii (Matsumura), in the California raspberry industry. , 2017, Pest management science.

[32]  J. Collatz,et al.  Seasonal and regional presence of hymenopteran parasitoids of Drosophila in Switzerland and their ability to parasitize the invasive Drosophila suzukii , 2017, Scientific Reports.

[33]  Kent M. Daane,et al.  Foraging efficiency and outcomes of interactions of two pupal parasitoids attacking the invasive spotted wing drosophila , 2016 .

[34]  T. Haye,et al.  Non-crop plants used as hosts by Drosophila suzukii in Europe , 2016, Journal of Pest Science.

[35]  Matthew L. Buffington,et al.  First exploration of parasitoids of Drosophila suzukii in South Korea as potential classical biological agents , 2016, Journal of Pest Science.

[36]  Xingeng Wang,et al.  Life-history and host preference of Trichopria drosophilae, a pupal parasitoid of spotted wing drosophila , 2016, BioControl.

[37]  J. P. Zhang,et al.  Current SWD IPM tactics and their practical implementation in fruit crops across different regions around the world , 2016, Journal of Pest Science.

[38]  W. Hutchison,et al.  Evaluation of high tunnels for management of Drosophila suzukii in fall-bearing red raspberries: Potential for reducing insecticide use , 2016, Journal of Pest Science.

[39]  J. C. Lee,et al.  Efficacy of commercially available predators, nematodes and fungal entomopathogens for augmentative control of Drosophila suzukii , 2015 .

[40]  Xingeng Wang,et al.  Seasonal occurrence of resident parasitoids associated with Drosophila suzukii in two small fruit production regions of Italy and the USA , 2015 .

[41]  M. Poyet,et al.  The Wide Potential Trophic Niche of the Asiatic Fruit Fly Drosophila suzukii: The Key of Its Invasion Success in Temperate Europe? , 2015, PloS one.

[42]  R. Isaacs,et al.  Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities , 2015, Journal of Pest Science.

[43]  R. Isaacs,et al.  Infestation of Wild and Ornamental Noncrop Fruits by Drosophila suzukii (Diptera: Drosophilidae) , 2015 .

[44]  D. Renault,et al.  Insects in fluctuating thermal environments. , 2015, Annual review of entomology.

[45]  Xingeng Wang,et al.  Factors Limiting Peach as a Potential Host for Drosophila suzukii (Diptera: Drosophilidae) , 2014, Journal of economic entomology.

[46]  R. Isaacs,et al.  Trap Designs for Monitoring Drosophila suzukii (Diptera: Drosophilidae) , 2013, Environmental entomology.

[47]  R. Isaacs,et al.  Control of spotted wing drosophila, Drosophila suzukii, by specific insecticides and by conventional and organic crop protection programs , 2013 .

[48]  H. Vogt,et al.  Comparison of a Synthetic Chemical Lure and Standard Fermented Baits for Trapping Drosophila suzukii (Diptera: Drosophilidae) , 2013, Environmental entomology.

[49]  G. Anfora,et al.  First field records of Pachycrepoideus vindemiae as a parasitoid of Drosophila suzukii in European and Oregon small fruit production areas , 2013 .

[50]  L. Borges,et al.  Hosts of the Parasitoid Pachycrepoideus vindemmiae (Rondani) (Hymenoptera: Pteromalidae) of Medical-Veterinary and Economic Importance Collected in the State of Goiás, Brazil , 2013 .

[51]  Saverio B. Grande,et al.  Dispersal of Aphytis melinus (Hymenoptera: Aphelinidae) after augmentative releases in citrus orchards , 2012 .

[52]  J. V. Lenteren,et al.  The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake , 2012, BioControl.

[53]  G. Heimpel,et al.  A ‘Goldilocks’ hypothesis for dispersal of biological control agents , 2011, BioControl.

[54]  P. Clercq,et al.  Benefits and risks of exotic biological control agents , 2011, BioControl.

[55]  R. Steenwyk,et al.  A critical evaluation of augmentative biological control , 2004 .

[56]  Kent M. Daane,et al.  Commercialization of Predators: Recent Lessons from Green Lacewings (Neuroptera: Chrysopidae: Chrosoperla) , 2000 .

[57]  A. Norton,et al.  Augmentation of the Egg Parasitoid Anaphes iole (Hymenoptera: Mymaridae) for Lygus hesperus (Heteroptera:Miridae) Management in Strawberries , 1996 .

[58]  D. W. Watson,et al.  Evaluation of Muscidifurax zaraptor and Pachycrepoideus vindemiae (Hymenoptera: Pteromalidae) for controlling flies associated with confined beef cattle , 1992 .

[59]  R. Miller,et al.  Biology, Population Dynamics, and Host Finding Efficiency of Pachycrepoideus vindemiae in a Box Stall and a Poultry House , 1975 .