Optimization of the lowest eigenvalue for the Schr\"odinger operator with a $\delta$-potential supported on a hyperplane
暂无分享,去创建一个
[1] P. Schlosser,et al. Quasi Boundary Triples, Self-adjoint Extensions, and Robin Laplacians on the Half-space , 2018, Linear Systems, Signal Processing and Hypercomplex Analysis.
[2] P. Seba,et al. Schrödinger-Operators with Singular Interactions , 1994 .
[3] P. Freitas,et al. The first Robin eigenvalue with negative boundary parameter , 2014, 1403.6666.
[4] A. Dujella. Elliptic equations , 2009 .
[5] Antoine Henrot,et al. Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .
[6] J. Fletcher. Distributions , 2008, BMJ : British Medical Journal.
[7] A. Laptev,et al. Spectral inequalities for Schrödinger operators with surface potentials , 2007, 0711.3473.
[8] M. Langer,et al. Spectral enclosures for non-self-adjoint extensions of symmetric operators , 2017, Journal of Functional Analysis.
[9] Marie-Hélène Bossel. Membranes élastiquement liées: extension du théorème de Rayleigh-Faber-Krahn et de l'inégalité de Cheeger , 1986 .
[10] Richard S. Laugesen,et al. Robin spectrum: two disks maximize the third eigenvalue , 2019, Indiana University Mathematics Journal.
[11] P. Freitas,et al. From Steklov to Neumann and Beyond, via Robin: The Szegő Way , 2018, Canadian Journal of Mathematics.
[12] Daniel Daners,et al. A Faber-Krahn inequality for Robin problems in any space dimension , 2006 .
[13] Pedro R. S. Antunes,et al. A Variational Formulation for Dirac Operators in Bounded Domains. Applications to Spectral Geometric Inequalities , 2020, Communications in Mathematical Physics.
[14] An Isoperimetric-Type Inequality for Electrostatic Shell Interactions for Dirac Operators , 2015, 1504.04220.
[15] An isoperimetric problem for leaky loops and related mean-chord inequalities , 2005, math-ph/0501066.
[16] L. Zanelli,et al. Mathematical methods of Quantum Mechanics , 2017 .
[17] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations , 2000 .
[18] P. Exner,et al. A spectral isoperimetric inequality for cones , 2015, 1512.01970.
[19] Antoine Henrot. Shape optimization and spectral theory , 2017 .
[20] J. Schwartz,et al. Spectral theory : self adjoint operators in Hilbert space , 1963 .
[21] M. Langer,et al. Schrödinger Operators with δ and δ′-Potentials Supported on Hypersurfaces , 2012, 1210.4709.
[22] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[23] Marion Kee,et al. Analysis , 2004, Machine Translation.
[24] B. Simon. Trace ideals and their applications , 1979 .
[25] Tosio Kato. Perturbation theory for linear operators , 1966 .
[26] H. Holden,et al. Solvable models in quantum mechanics , 1990 .
[27] Spectral Isoperimetric Inequality for the δ′-Interaction on a Contour , 2020, Springer INdAM Series.
[28] 新國 裕昭,et al. 書評 Gerald Teschl : Mathematical Methods in Quantum Mechanics : With Applications to Schrodinger Operators , 2013 .
[29] A Sharp estimate for the first Robin–Laplacian eigenvalue with negative boundary parameter , 2018, Rendiconti Lincei - Matematica e Applicazioni.
[30] D. Krejčiřík,et al. Optimisation of the Lowest Robin Eigenvalue in the Exterior of a Compact Set, II: Non-Convex Domains and Higher Dimensions , 2017, Potential Analysis.
[31] P. Exner,et al. Spectral optimization for strongly singular Schrödinger operators with a star-shaped interaction , 2019, Letters in Mathematical Physics.
[32] Bounds and extremal domains for Robin eigenvalues with negative boundary parameter , 2016, 1605.08161.
[33] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.