Optimization of the lowest eigenvalue for the Schr\"odinger operator with a $\delta$-potential supported on a hyperplane

We consider the self-adjoint Schrödinger operator in L(R), d ≥ 2, with a δ-potential supported on a hyperplane Σ ⊆ R of strength α = α0+α1, where α0 ∈ R is a constant and α1 ∈ L(Σ) is a nonnegative function. As the main result, we prove that the lowest spectral point of this operator is not smaller than that of the same operator with potential strength α0+α∗1 , where α ∗ 1 is the symmetric decreasing rearrangement of α1. The proof relies on the Birman-Schwinger principle and the reduction to an analogue of the Pólya-Szegő inequality for the relativistic kinetic energy in R.

[1]  P. Schlosser,et al.  Quasi Boundary Triples, Self-adjoint Extensions, and Robin Laplacians on the Half-space , 2018, Linear Systems, Signal Processing and Hypercomplex Analysis.

[2]  P. Seba,et al.  Schrödinger-Operators with Singular Interactions , 1994 .

[3]  P. Freitas,et al.  The first Robin eigenvalue with negative boundary parameter , 2014, 1403.6666.

[4]  A. Dujella Elliptic equations , 2009 .

[5]  Antoine Henrot,et al.  Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .

[6]  J. Fletcher Distributions , 2008, BMJ : British Medical Journal.

[7]  A. Laptev,et al.  Spectral inequalities for Schrödinger operators with surface potentials , 2007, 0711.3473.

[8]  M. Langer,et al.  Spectral enclosures for non-self-adjoint extensions of symmetric operators , 2017, Journal of Functional Analysis.

[9]  Marie-Hélène Bossel Membranes élastiquement liées: extension du théorème de Rayleigh-Faber-Krahn et de l'inégalité de Cheeger , 1986 .

[10]  Richard S. Laugesen,et al.  Robin spectrum: two disks maximize the third eigenvalue , 2019, Indiana University Mathematics Journal.

[11]  P. Freitas,et al.  From Steklov to Neumann and Beyond, via Robin: The Szegő Way , 2018, Canadian Journal of Mathematics.

[12]  Daniel Daners,et al.  A Faber-Krahn inequality for Robin problems in any space dimension , 2006 .

[13]  Pedro R. S. Antunes,et al.  A Variational Formulation for Dirac Operators in Bounded Domains. Applications to Spectral Geometric Inequalities , 2020, Communications in Mathematical Physics.

[14]  An Isoperimetric-Type Inequality for Electrostatic Shell Interactions for Dirac Operators , 2015, 1504.04220.

[15]  An isoperimetric problem for leaky loops and related mean-chord inequalities , 2005, math-ph/0501066.

[16]  L. Zanelli,et al.  Mathematical methods of Quantum Mechanics , 2017 .

[17]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[18]  P. Exner,et al.  A spectral isoperimetric inequality for cones , 2015, 1512.01970.

[19]  Antoine Henrot Shape optimization and spectral theory , 2017 .

[20]  J. Schwartz,et al.  Spectral theory : self adjoint operators in Hilbert space , 1963 .

[21]  M. Langer,et al.  Schrödinger Operators with δ and δ′-Potentials Supported on Hypersurfaces , 2012, 1210.4709.

[22]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[23]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[24]  B. Simon Trace ideals and their applications , 1979 .

[25]  Tosio Kato Perturbation theory for linear operators , 1966 .

[26]  H. Holden,et al.  Solvable models in quantum mechanics , 1990 .

[27]  Spectral Isoperimetric Inequality for the δ′-Interaction on a Contour , 2020, Springer INdAM Series.

[28]  新國 裕昭,et al.  書評 Gerald Teschl : Mathematical Methods in Quantum Mechanics : With Applications to Schrodinger Operators , 2013 .

[29]  A Sharp estimate for the first Robin–Laplacian eigenvalue with negative boundary parameter , 2018, Rendiconti Lincei - Matematica e Applicazioni.

[30]  D. Krejčiřík,et al.  Optimisation of the Lowest Robin Eigenvalue in the Exterior of a Compact Set, II: Non-Convex Domains and Higher Dimensions , 2017, Potential Analysis.

[31]  P. Exner,et al.  Spectral optimization for strongly singular Schrödinger operators with a star-shaped interaction , 2019, Letters in Mathematical Physics.

[32]  Bounds and extremal domains for Robin eigenvalues with negative boundary parameter , 2016, 1605.08161.

[33]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.