Quantum systems with finite Hilbert space: Galois fields in quantum mechanics

A 'Galois quantum system' in which the position and momentum take values in the Galois field GF(pl) is considered. It is comprised of l-component systems which are coupled in a particular way and is described by a certain class of Hamiltonians. Displacements in the GF(pl) × GF(pl) phase space and the corresponding Heisenberg–Weyl group are studied. Symplectic transformations are shown to form the Sp(2, GF(pl)) group. Wigner and Weyl functions are defined and their properties are studied. Frobenius symmetries, which are based on Frobenius automorphisms in the theory of Galois fields, are a unique feature of these systems (for l ≥ 2). If they commute with the Hamiltonian, there are constants of motion which are discussed. An analytic representation in the l-sheeted complex plane provides an elegant formalism that embodies the properties of Frobenius transformations. The difference between a Galois quantum system and other finite quantum systems where the position and momentum take values in the ring is discussed.

[1]  J. V. Corbett,et al.  About SIC POVMs and discrete Wigner distributions , 2005 .

[2]  E. I. Zelonov P-adic quantum mechanics and coherent states , 1991 .

[3]  M. Berry,et al.  Quantization of linear maps on a torus-fresnel diffraction by a periodic grating , 1980 .

[4]  J. L. Romero,et al.  Geometrical approach to the discrete Wigner function in prime power dimensions , 2006 .

[5]  Franco Vivaldi,et al.  Geometry of linear maps over finite fields , 1992 .

[6]  E. Galvão Discrete Wigner functions and quantum computational speedup , 2004, quant-ph/0405070.

[7]  A. Vourdas The angle-angular momentum quantum phase space , 1996 .

[8]  Thomas Beth,et al.  Cryptanalysis of a practical quantum key distribution with polarization-entangled photons , 2005, Quantum Inf. Comput..

[9]  Leonhardt Quantum-state tomography and discrete Wigner function. , 1995, Physical review letters.

[10]  T. Durt,et al.  Factorization of the Wigner distribution in prime power dimensions , 2006 .

[11]  T. Durt ABOUT THE MEAN KING'S PROBLEM AND DISCRETE WIGNER DISTRIBUTIONS , 2006 .

[12]  Thomas Durt,et al.  About mutually unbiased bases in even and odd prime power dimensions , 2005 .

[13]  W. Greub Linear Algebra , 1981 .

[14]  Donald Ludwig,et al.  Uniform asymptotic expansions at a caustic , 1966 .

[15]  L. L. Sanchez-Soto,et al.  A complementarity-based approach to phase in finite-dimensional quantum systems , 2005 .

[16]  T. Hashimoto,et al.  Mean king's problem with mutually unbiased bases and orthogonal Latin squares , 2005 .

[17]  Shun’ichi Tanaka On irreducible unitary representations of some special linear groups of the second order. I , 1966 .

[18]  Gunnar Bjork,et al.  Mutually unbiased bases and discrete Wigner functions , 2007 .

[19]  W. Wootters A Wigner-function formulation of finite-state quantum mechanics , 1987 .

[20]  D. Fairlie,et al.  Infinite Dimensional Algebras and a Trigonometric Basis for the Classical Lie Algebras , 1990 .

[21]  J. Schwinger Quantum Kinematics And Dynamics , 1970 .

[22]  E. Thiran,et al.  Quantum mechanics on p-adic fields , 1989 .

[23]  P. Chandrasekaran,et al.  The generalized Clifford algebra and the unitary group , 1969 .

[24]  A. Vourdas The Frobenius Formalism in Galois Quantum Systems , 2006, quant-ph/0605054.

[25]  Apostolos Vourdas,et al.  Analytic representations in quantum mechanics , 2006 .

[26]  D. M. Appleby Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .

[27]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[28]  A. Vourdas Phase space methods for finite quantum systems , 1997 .

[29]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[30]  J. Tolar,et al.  Quantization on and coherent states over , 1997 .

[31]  J. Gracia-Bond́ıa,et al.  Moyal quantization with compact symmetry groups and noncommutative harmonic analysis , 1990 .

[32]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[33]  R. Tolimieri,et al.  Is computing with the finite Fourier transform pure or applied mathematics , 1979 .

[34]  D. Gross Hudson's theorem for finite-dimensional quantum systems , 2006, quant-ph/0602001.

[35]  Shun’ichi Tanaka,et al.  Construction and classification of irreducible representations of special linear group of the second order over a finite field , 1967 .

[36]  P. Combe,et al.  A stochastic treatment of the dynamics of an integer spin , 1988 .

[37]  A. Terras Fourier Analysis on Finite Groups and Applications: Index , 1999 .

[38]  M. L. Mehta,et al.  Eigenvalues and eigenvectors of the finite Fourier transform , 1987 .

[39]  G. Toulouse,et al.  Ultrametricity for physicists , 1986 .

[40]  A. Weil Sur certains groupes d'opérateurs unitaires , 1964 .

[41]  Metod Saniga,et al.  Mutually unbiased bases and finite projective planes , 2004 .

[42]  P. Combe,et al.  Fokker-Planck equation associated with the Wigner function of a quantum system with a finite number of states , 1990 .

[43]  Apostolos Vourdas,et al.  Quantum systems with finite Hilbert space , 2004 .

[44]  A. Vourdas Galois quantum systems , 2005 .

[45]  A. Vourdas,et al.  SU(2) and SU(1,1) phase states. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[46]  a SU(2) Recipe for Mutually Unbiased Bases , 2006, quant-ph/0601092.

[47]  Entangling transformations in composite finite quantum systems , 2003 .

[48]  H. C. Rosu,et al.  Mutually unbiased phase states, phase uncertainties, and Gauss sums , 2005, quant-ph/0506128.

[49]  A. Vourdas Galois quantum systems, irreducible polynomials and Riemann surfaces , 2006 .

[50]  Markus Neuhauser,et al.  An explicit construction of the metaplectic representation over a finite field. , 2002 .

[51]  P. Oscar Boykin,et al.  A New Proof for the Existence of Mutually Unbiased Bases , 2002, Algorithmica.

[52]  Finite-dimensional Schwinger basis, deformed symmetries, Wigner function, and an algebraic approach to quantum phase , 1998, quant-ph/9809074.

[53]  Y. Aharonov,et al.  The mean king's problem: Prime degrees of freedom , 2001, quant-ph/0101134.

[54]  J. Gracia-Bond́ıa,et al.  The Moyal representation for spin , 1989 .

[55]  MAC LANE METHOD FOR DETERMINATION OF EXTENSIONS OF FINITE GROUPS. I. A REVIEW IN THE CONTEXT OF STRUCTURE OF CONDENSED MATTER , 1992 .

[56]  A. Weil,et al.  Sur la formule de Siegel dans la théorie des groupes classiques , 1965 .

[58]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[59]  J. Tolar,et al.  Feynman path integral and ordering rules on discrete finite space , 1993 .

[60]  Andreas Klappenecker,et al.  Constructions of Mutually Unbiased Bases , 2003, International Conference on Finite Fields and Applications.

[61]  A. Vourdas Symplectically entangled states and their applications to coding , 2004 .

[62]  M. Kibler ANGULAR MOMENTUM AND MUTUALLY UNBIASED BASES , 2005, quant-ph/0510124.

[63]  D. Galetti,et al.  An extended Weyl-Wigner transformation for special finite spaces , 1988 .

[64]  Qubits in phase space: Wigner-function approach to quantum-error correction and the mean-king problem , 2004, quant-ph/0410117.

[65]  L. Sánchez-Soto,et al.  Multicomplementary operators via finite Fourier transform , 2004, quant-ph/0410155.

[66]  T. Santhanam,et al.  Quantum mechanics in finite dimensions , 1976 .

[67]  Srinivasa Varadhan,et al.  FINITE APPROXIMATIONS TO QUANTUM SYSTEMS , 1994 .

[68]  I. Shparlinski,et al.  Character Sums with Exponential Functions and their Applications: Preliminaries , 1999 .

[69]  Leonhardt,et al.  Discrete Wigner function and quantum-state tomography. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[70]  A. Vourdas Coherent states on the m-sheeted complex plane as m-photon states , 1994 .

[71]  Steven T. Flammia On SIC-POVMs in prime dimensions , 2006 .

[72]  Ingemar Bengtsson,et al.  Mutually Unbiased Bases and the Complementarity Polytope , 2005, Open Syst. Inf. Dyn..

[73]  Wigner functions and separability for finite systems , 2005, quant-ph/0501104.

[74]  J. Schwinger UNITARY OPERATOR BASES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[75]  L. L. Sanchez-Soto,et al.  Geometrical approach to mutually unbiased bases , 2007, 0706.2626.

[76]  Ilya Piatetski-Shapiro,et al.  Complex representations of GL(2,K) for finite fields K , 1983 .

[77]  S. Chaturvedi,et al.  Aspects of mutually unbiased bases in odd-prime-power dimensions , 2001, quant-ph/0109003.

[78]  Felix M. Lev Why is quantum physics based on complex numbers? , 2006, Finite Fields Their Appl..

[79]  Mac Lane method of group cohomologies and Gauge theories on finite lattices , 1994 .

[80]  Thomas Durt,et al.  About Weyl and Wigner Tomography in Finite-Dimensional Hilbert Spaces , 2006, Open Syst. Inf. Dyn..

[81]  Igor Volovich,et al.  p-adic quantum mechanics , 1989 .

[82]  Bruno Torrésani,et al.  Wavelets on Discrete Fields , 1994 .

[83]  L. L. Sanchez-Soto,et al.  Structure of the sets of mutually unbiased bases for N qubits (8 pages) , 2005 .

[84]  Arthur O. Pittenger,et al.  Mutually Unbiased Bases, Generalized Spin Matrices and Separability , 2003 .

[85]  V. Varadarajan Variations on a theme of Schwinger and Weyl , 1995 .

[86]  Discrete phase space based on finite fields , 2004, quant-ph/0401155.

[87]  N.Ya. Vilenkin,et al.  RADON TRANSFORM OF TEST FUNCTIONS AND GENERALIZED FUNCTIONS ON A REAL AFFINE SPACE , 1966 .