Performing allocentric visuospatial judgments with induced distortion of the egocentric reference frame: an fMRI study with clinical implications

The temporary improvement of visuospatial neglect during galvanic vestibular stimulation (Scand. J. Rehabil. Med. 31 (1999)117) may result from correction of the spatial reference frame distorted by the responsible lesion. Prior to an investigation of the neural basis of this effect in neurological patients, exploration of the neural mechanisms underlying such procedures in normals is required to provide insight into the physiological basis thereof. Despite their clinical impact, the neural mechanisms underlying the interaction of galvanic (and other) vestibular manipulations with visuospatial processing (and indeed the neural bases of how spatial reference frames are computed in man) remain to be clarified. We accordingly used fMRI in normal volunteers to investigate the effect of galvanically induced interference with the egocentric spatial reference frame on the neural processes underlying allocentric visuospatial (line bisection) judgments. A significant specific interaction of galvanic vestibular stimulation with the neural mechanisms underlying allocentric visuospatial judgments was observed in right posterior parietal and ventral premotor cortex only. Activation of these areas previously found to be damaged in visuospatial neglect suggests that these effects reflect the increased processing demands when compensating for the distorted egocentric spatial reference frame while maintaining accurate performance during the allocentric spatial task. These results thus implicate right posterior parietal and right ventral premotor cortex in the computation of spatial reference frames. Furthermore, our data imply a specific physiological basis for the temporary improvement of visuospatial neglect in patients with right hemisphere lesions during galvanic vestibular stimulation and may thus impact upon the rehabilitation of neglect: understanding the interaction of galvanic vestibular stimulation with allocentric visuospatial judgments in healthy volunteers may lead to the more effective deployment of such techniques in neurological patients.

[1]  Gereon R. Fink,et al.  Space Coding in Primate Posterior Parietal Cortex , 2001, NeuroImage.

[2]  A. Murata,et al.  Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4) , 1999, Experimental Brain Research.

[3]  C D Frith,et al.  Space-based and object-based visual attention: shared and specific neural domains. , 1997, Brain : a journal of neurology.

[4]  K. Zilles,et al.  Neural consequences of acting in near versus far space: a physiological basis for clinical dissociations. , 2000, Brain : a journal of neurology.

[5]  Xue-qun Chen,et al.  Hypoxia influences enkephalin release in rats , 2000, Neuroreport.

[6]  R. Andersen,et al.  The Contributions of Vestibular Signals to the Representations of Space in the Posterior Parietal Cortex , 1999, Annals of the New York Academy of Sciences.

[7]  Fabrizio Doricchi,et al.  Implicit Semantic Evaluation of Object Symmetry and Contralesional Visual Denial in A Case of Left Unilateral Neglect with Damage of The Dorsal Paraventricular White Matter , 2000, Cortex.

[8]  E. Bisiach,et al.  Remission of hemineglect and anosognosia during vestibular stimulation , 1987, Neuropsychologia.

[9]  Gereon R Fink,et al.  ‘Where’ depends on ‘what’: A differential functional anatomy for position discrimination in one- versus two-dimensions , 2000, Neuropsychologia.

[10]  Y. Rossetti,et al.  Reducing spatial neglect by visual and other sensory manipulations: non-cognitive (physiological) routes to the rehabilitation of a cognitive disorder , 2002 .

[11]  M. Perenin,et al.  Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect , 1998, Nature.

[12]  M. Wiesmann,et al.  Cerebral functional magnetic resonance imaging of vestibular, auditory, and nociceptive areas during galvanic stimulation , 1998, Annals of neurology.

[13]  Christopher Kennard,et al.  Visual neglect associated with frontal lobe infarction , 1996, Journal of Neurology.

[14]  Alan Cowey,et al.  Plasticity revealed by transcranial magnetic stimulation of early visual cortex , 2000, Neuroreport.

[15]  Richard S. J. Frackowiak,et al.  Identification of the central vestibular projections in man: a positron emission tomography activation study , 2004, Experimental Brain Research.

[16]  D. Boussaoud,et al.  Gaze effects in the cerebral cortex: reference frames for space coding and action , 1999, Experimental Brain Research.

[17]  A. Rubens Caloric stimulation and unilateral visual neglect , 1985, Neurology.

[18]  J. Marshall,et al.  Visuo-spatial neglect: a new copying test to assess perceptual parsing , 2004, Journal of Neurology.

[19]  Patrizia Fattori,et al.  The Posterior Parietal Cortex in Humans and Monkeys , 1997 .

[20]  Ivan Toni,et al.  Task instructions influence the cognitive strategies involved in line bisection judgements: evidence from modulated neural mechanisms revealed by fMRI , 2002, Neuropsychologia.

[21]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[22]  M. Gazzaniga,et al.  The new cognitive neurosciences , 2000 .

[23]  Wilfried Brauer,et al.  Spatial Cognition III , 2003, Lecture Notes in Computer Science.

[24]  A P Batista,et al.  Posterior parietal areas specialized for eye movements (LIP) and reach (PRR) using a common coordinate frame. , 1998, Novartis Foundation symposium.

[25]  S. Glasauer,et al.  Comparison of human ocular torsion patterns during natural and galvanic vestibular stimulation. , 2002, Journal of neurophysiology.

[26]  T. Brandt,et al.  Vestibular syndromes in the roll plane: Topographic diagnosis from brainstem to cortex , 1994, Annals of neurology.

[27]  Yale E. Cohen,et al.  A common reference frame for movement plans in the posterior parietal cortex , 2002, Nature Reviews Neuroscience.

[28]  C. Frith,et al.  Cerebral representations for egocentric space: functional-anatomical evidence from caloric vestibular stimulation and neck vibration , 2001, NeuroImage.

[29]  Giuseppe Vallar,et al.  The Cognitive and Neural Bases of Spatial Neglect , 2002 .

[30]  Gereon R. Fink,et al.  Spatial Cognition: Where We Were and Where We Are , 2001, NeuroImage.

[31]  Peter Thier,et al.  Parietal Lobe Contributions to Orientation in 3D Space , 1997 .

[32]  K M Heilman,et al.  [Right hemisphere dominance for attention]. , 1983, Revue neurologique.

[33]  Karl J. Friston,et al.  Scanning patients with tasks they can perform , 1999, Human brain mapping.

[34]  M Dieterich,et al.  Effects of galvanic vestibular stimulation on otolithic and semicircular canal eye movements and perceived vertical. , 1998, Electroencephalography and Clinical Neurophysiology.

[35]  J. Marshall,et al.  Spatial cognition: evidence from visual neglect , 2003, Trends in Cognitive Sciences.

[36]  Alain Berthoz,et al.  A fronto-parietal system for computing the egocentric spatial frame of reference in humans , 1999, Experimental Brain Research.

[37]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[38]  T. Brandt,et al.  Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). , 2001, Journal of neurophysiology.

[39]  Sylvie Chokron,et al.  Egocentric frame of reference: its role in spatial biasafter right hemisphere lesions , 1999, Neuropsychologia.

[40]  Gereon R. Fink,et al.  Spatial Awareness: A Function of the Posterior Parietal Lobe? , 2002, Cortex.

[41]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[42]  K. Heilman,et al.  Right hemisphere dominance for attention , 1980, Neurology.

[43]  A. Yamadori,et al.  Dissociation of body-centered and stimulus-centered representations in unilateral neglect , 2001, Neurology.

[44]  T. Brandt,et al.  Dominance for vestibular cortical function in the non-dominant hemisphere. , 2003, Cerebral cortex.

[45]  K. Zilles,et al.  The Neural Basis of Vertical and Horizontal Line Bisection Judgments: An fMRI Study of Normal Volunteers , 2001, NeuroImage.

[46]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[47]  K. Zilles,et al.  Line bisection judgments implicate right parietal cortex and cerebellum as assessed by fMRI , 2000, Neurology.

[48]  R. Andersen,et al.  Multimodal representation of space in the posterior parietal cortex and its use in planning movements. , 1997, Annual review of neuroscience.

[49]  A. Berthoz,et al.  The neural basis of egocentric and allocentric coding of space in humans: a functional magnetic resonance study , 2000, Experimental Brain Research.

[50]  K. Zilles,et al.  Polymodal Motion Processing in Posterior Parietal and Premotor Cortex A Human fMRI Study Strongly Implies Equivalencies between Humans and Monkeys , 2001, Neuron.

[51]  J. Goldberg,et al.  Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. , 1984, Journal of neurophysiology.

[52]  Giuseppe Vallar,et al.  Optokinetic Stimulation Affects Both Vertical and Horizontal Deficits of Position Sense in Unilateral Neglect , 1995, Cortex.

[53]  M Dieterich,et al.  Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance. An fMRI study. , 1998, Brain : a journal of neurology.

[54]  G. Rizzolatti,et al.  Space coding by premotor cortex , 2004, Experimental Brain Research.

[55]  C. Gross,et al.  Spatial maps for the control of movement , 1998, Current Opinion in Neurobiology.

[56]  B. Johansson,et al.  Reduction of visuo-spatial neglect with vestibular galvanic stimulation. , 1999, Scandinavian journal of rehabilitation medicine.

[57]  D. Boussaoud Primate premotor cortex: modulation of preparatory neuronal activity by gaze angle. , 1995, Journal of neurophysiology.

[58]  Giuseppe Vallar,et al.  Modulation of the Neglect Syndrome by Sensory Stimulation , 1997 .

[59]  T. Paus Location and function of the human frontal eye-field: A selective review , 1996, Neuropsychologia.

[60]  G. Vallar Extrapersonal Visual Unilateral Spatial Neglect and Its Neuroanatomy , 2001, NeuroImage.

[61]  C. Gross,et al.  Coding of visual space by premotor neurons. , 1994, Science.

[62]  F. Bremmer,et al.  Spatial invariance of visual receptive fields in parietal cortex neurons , 1997, Nature.