A time-discrete model for dynamic fracture based on crack regularization

[1]  Gianni Royer-Carfagni,et al.  Regularized variational theories of fracture: A unified approach , 2010 .

[2]  Christopher J. Larsen,et al.  EXISTENCE OF SOLUTIONS TO A REGULARIZED MODEL OF DYNAMIC FRACTURE , 2010 .

[3]  Christopher J. Larsen,et al.  Models for Dynamic Fracture Based on Griffith’s Criterion , 2010 .

[4]  Klaus Hackl,et al.  IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials , 2010 .

[5]  Jean-Jacques Marigo,et al.  Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments , 2009 .

[6]  Giovanni Lancioni,et al.  The Variational Approach to Fracture Mechanics. A Practical Application to the French Panthéon in Paris , 2009 .

[7]  Vincent Hakim,et al.  Laws of crack motion and phase-field models of fracture , 2008, 0806.0593.

[8]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[9]  F. Corson,et al.  Thermal fracture as a framework for quasi-static crack propagation , 2008, 0801.2101.

[10]  B. A.,et al.  ENERGIES IN SBV AND VARIATIONAL MODELS IN FRACTURE MECHANICS , 2008 .

[11]  G. Piero,et al.  A variational model for fracture mechanics - Numerical experiments , 2007 .

[12]  B. Bourdin Numerical implementation of the variational formulation for quasi-static brittle fracture , 2007 .

[13]  D. Keyes,et al.  Implicit solvers for large-scale nonlinear problems , 2006 .

[14]  Nancy Wilkins-Diehr,et al.  TeraGrid: Analysis of Organization, System Architecture, and Middleware Enabling New Types of Applications , 2006, High Performance Computing Workshop.

[15]  E. Jagla,et al.  Diffuse interface approach to brittle fracture. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  A. Karma,et al.  Unsteady crack motion and branching in a phase-field model of brittle fracture. , 2004, Physical review letters.

[17]  Christopher J. Larsen,et al.  Existence and convergence for quasi‐static evolution in brittle fracture , 2003 .

[18]  A. Giacomini Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures , 2003, math/0303040.

[19]  J. Sethna,et al.  Fracture in mode I using a conserved phase-field model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Andrea Braides Γ-convergence for beginners , 2002 .

[21]  A. Karma,et al.  Phase-field model of mode III dynamic fracture. , 2001, Physical review letters.

[22]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[23]  I. Aranson,et al.  Continuum field description of crack propagation , 2000, Physical review letters.

[24]  Andrea Braides Approximation of Free-Discontinuity Problems , 1998 .

[25]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[26]  G. Bellettini,et al.  Discrete approximation of a free discontinuity problem , 1994 .

[27]  B. Lawn Fracture of Brittle Solids by Brian Lawn , 1993 .

[28]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[29]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[30]  Robert V. Kohn,et al.  On the slowness of phase boundary motion in one space dimension , 1990 .

[31]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .