Volterra functional series expansions for semiconductor lasers under modulation
暂无分享,去创建一个
Françoise Lamnabhi-Lagarrigue | A. Destrez | Zeno Toffano | F. Lamnabhi-Lagarrigue | L. Hassine | L. Hassine | Z. Toffano | A. Destrez | C. Birocheau | C. Birocheau
[1] M. Demokan,et al. An analysis of gain-switched semiconductor lasers generating pulse-code-modulated light with a high bit rate , 1984, IEEE Journal of Quantum Electronics.
[2] M Lamnabhi. A new symbolic calculus for the response of nonlinear systems , 1982 .
[3] Universal relationship between resonant frequency and damping rate of 1.3 μm InGaAsP semiconductor lasers , 1987 .
[4] R. B. Lauer,et al. 15 GHz direct modulation bandwidth of vapour-phase regrown 1.3 μm InGaAsP buried-heterostructure lasers under CW operation at room temperature , 1985 .
[5] R. F. Ormondroyd,et al. Large-signal harmonic and intermodulation distortions in wide-bandwidth GaInAsP semiconductor lasers , 1989 .
[6] W. Powazinik,et al. Strong influence of nonlinear gain on spectral and dynamic characteristics of InGaAsP lasers , 1985 .
[7] D. J. Channin,et al. Effect of gain saturation on injection laser switching , 1979 .
[8] T. Brown,et al. Frequency dependence of the chirp factor in 1.55 mu m distributed feedback semiconductor lasers , 1992, IEEE Photonics Technology Letters.
[9] Rodney S. Tucker,et al. High-speed modulation of semiconductor lasers , 1985 .
[10] J. J. O'Reilly,et al. Volterra series analysis of distortion in semiconductor laser diodes , 1991 .
[11] A. Yariv,et al. Ultra-high speed semiconductor lasers , 1985 .
[12] K. Kishino,et al. Wavelength variation of 1.6 µm wavelength buried heterostructure GaInAsP/InP lasers due to direct modulation , 1982, IEEE Journal of Quantum Electronics.
[13] Rodney S. Tucker,et al. Intermodulation and harmonic distortion in InGaAsP lasers , 1985 .
[14] A. Yariv,et al. The gain and carrier density in semiconductor lasers under steady-state and transient conditions , 1992 .
[15] Françoise Lamnabhi-Lagarrigue,et al. An algebraic approach to nonlinear functional expansions , 1983 .
[16] A. Yariv,et al. Intermodulation distortion in a directly modulated semiconductor injection laser , 1984 .
[17] K. Petermann. Laser Diode Modulation and Noise , 1988 .
[18] B. W. Hakki,et al. Evaluation of transmission characteristics of chirped DFB lasers in dispersive optical fiber , 1992 .
[20] C. Y. Kuo. Fundamental second-order nonlinear distortions in analog AM CATV transport systems based on single frequency semiconductor lasers , 1992 .
[21] Roger W. Brockett. Volterra series and geometric control theory , 1976, Autom..
[22] J. P. Woerdman,et al. Spectral signature of relaxation oscillations in semiconductor lasers , 1992 .
[23] Michel Fliess,et al. Application of a new functional expansion to the cubic anharmonic oscillator , 1982 .
[24] Yoshihisa Yamamoto,et al. Direct frequency modulation in AlGaAs semiconductor lasers , 1982 .
[25] Alexis Martin. Calcul d'approximations de la solution d'un systeme non lineaire utilisant le logiciel Scratchpad , 1991 .
[26] G. E. Bodeep,et al. Lightwave subcarrier CATV transmission systems , 1990 .
[27] Rodney S. Tucker,et al. Large-signal switching transients in index-guided semiconductor lasers , 1984 .
[28] T.K. Biswas,et al. Volterra series analysis of semiconductor laser diode , 1991, IEEE Photonics Technology Letters.
[29] John E. Bowers,et al. High-speed InGaAsP constricted-mesa lasers , 1986 .
[30] Govind P. Agrawal,et al. Effect of gain and index nonlinearities on single-mode dynamics in semiconductor lasers , 1990, Annual Meeting Optical Society of America.
[31] G. Agrawal. Effect of nonlinear gain on intensity noise in single-mode semiconductor lasers , 1991 .