Deterministic remote preparation of an arbitrary W-class state with multiparty

Our concern is to design some deterministic schemes for remotely preparing an arbitrary W-class state from one sender to one of a number of receivers. Compared with previous remote preparation schemes, the real receiver in our schemes is unknown to the sender. Firstly, by introducing a novel entanglement transformation the sender can deterministically prepare an arbitrary W-class state with complex spectra to one of two remote receivers via two four-particle GHZ states as the quantum channel. As for preparing a W-class state with real spectra, by constructing a general and useful measurement basis for the sender, another economical protocol can be designed with unit success probability. These schemes are extended to multiparties via two multi-particle GHZ states as the quantum channel. The classical communication costs of all the schemes are calculated to determine the classical resources required.

[1]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[2]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[3]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[4]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[5]  H. Kimble,et al.  Teleportation of continuous quantum variables , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[6]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[7]  E. Knill,et al.  Complete quantum teleportation using nuclear magnetic resonance , 1998, Nature.

[8]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[9]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[10]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[11]  A. Pati Minimum classical bit for remote preparation and measurement of a qubit , 1999, quant-ph/9907022.

[12]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[13]  H. Lo Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity , 1999, quant-ph/9912009.

[14]  T. Berger,et al.  Low-entanglement remote state preparation. , 2001, Physical review letters.

[15]  C. H. Bennett,et al.  Remote state preparation. , 2000, Physical review letters.

[16]  William K. Wootters,et al.  Erratum: Remote State Preparation [Phys. Rev. Lett. 87, 077902 (2001)] , 2002 .

[17]  Teleportation of a three-particle entangled W state , 2002 .

[18]  Guang-Can Guo,et al.  Scheme for preparation of the W state via cavity quantum electrodynamics , 2002 .

[19]  Fengli Yan,et al.  Probabilistic and controlled teleportation of unknown quantum states , 2003 .

[20]  Debbie W Leung,et al.  Oblivious remote state preparation. , 2003, Physical review letters.

[21]  A. Hayashi,et al.  Remote state preparation without oblivious conditions , 2002, quant-ph/0205009.

[22]  Teleportation of atomic states via cavity quantum electrodynamics , 2004, quant-ph/0409194.

[23]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[24]  G. Guo,et al.  Faithful remote state preparation using finite classical bits and a nonmaximally entangled state , 2003, quant-ph/0307027.

[25]  Chui-Ping Yang,et al.  Efficient many-party controlled teleportation of multiqubit quantum information via entanglement , 2004, quant-ph/0402138.

[26]  Zhuo-Liang Cao,et al.  Teleportation of a two-particle entangled state via W class states , 2004, quant-ph/0401054.

[27]  M. Goggin,et al.  Remote state preparation: arbitrary remote control of photon polarization. , 2005, Physical review letters.

[28]  Probabilistic Teleportation of a Four-Particle Entangled W State , 2005 .

[29]  Shi-Biao Zheng Splitting quantum information via W states , 2006 .

[30]  A. Pati,et al.  Perfect teleportation and superdense coding with W states , 2006, quant-ph/0610001.

[31]  V. N. Gorbachev,et al.  Decay and storage of multiparticle entangled states of atoms in collective thermostat , 2006, quant-ph/0611117.

[32]  Economical and feasible controlled teleportation of an arbitrary unknown N-qubit entangled state , 2007 .

[33]  Daowen Qiu,et al.  The states of W-class as shared resources for perfect teleportation and superdense coding , 2007, quant-ph/0701030.

[34]  Yan Xia,et al.  Multiparty remote state preparation , 2007 .

[35]  Ping Zhou,et al.  Multiparty-controlled teleportation of an arbitrary m-qudit state with a pure entangled quantum channel , 2007, 0705.2660.

[36]  Xiao-Qi Xiao,et al.  Remote Preparation of a Two-Particle Entangled State via Two Tripartite W Entangled States , 2003 .

[37]  Yong-Chang Huang,et al.  N-Particle General W State and Probabilistic Teleportation , 2007 .

[38]  Jie Song,et al.  Remote preparation of the N-particle GHZ state using quantum statistics , 2007 .

[39]  Dong Wang,et al.  Remote preparation of a class of three-qubit states , 2008 .

[40]  P. Panigrahi,et al.  Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state , 2007, 0708.3785.

[41]  Chi-Yee Cheung,et al.  Minimal classical communication and measurement complexity for quantum information splitting , 2008, 0812.4214.

[42]  Zhang Ming,et al.  Classical Communication Cost and Remote Preparation of Multi-qubit with Three-Party , 2008 .

[43]  B. A. Nguyen,et al.  Joint remote state preparation , 2008 .

[44]  Zhang Ming,et al.  Remote preparation of an entangled two-qubit state with three parties , 2008 .

[45]  Qiaoyan Wen,et al.  Quantum circuits for controlled teleportation of two-particle entanglement via a W state , 2008 .

[46]  He-Shan Song,et al.  Preparation of partially entangled W state and deterministic multi-controlled teleportation , 2008 .

[47]  N. An Joint remote preparation of a general two-qubit state , 2009 .

[48]  Lin Ji,et al.  A New (2+1)-Dimensional Integrable Equation , 2009 .

[49]  Shi Shou-Hua,et al.  Classical Communication Cost and Probabilistic Remote Preparation of Four-Particle Entangled W State , 2009 .

[50]  Liu Yimin,et al.  Controlled Remote State Preparation , 2009 .

[51]  Mikio Nakahara,et al.  Economical (k,m) -threshold controlled quantum teleportation , 2009, 0901.2674.

[52]  Yiping Lu,et al.  Joint Remote Preparation of a Multipartite GHZ-class State , 2009 .

[53]  Zhan You-bang,et al.  Controlled Probabilistic Teleportation of an Unknown Multi-Particle High-Dimensional Entangled State , 2009 .