Propagating beliefs in spin-glass models

We investigate dynamics of an inference algorithm termed the belief propagation (BP) when employed in spin glass (SG) models and show that its macroscopic behaviors can be traced by recursive updates of certain auxiliary field distributions the stationary state of which reproduces the replica symmetric solution offered by the equilibrium analysis. We further provide a compact expression for instability condition of the BP's fixed point which turns out to be identical to that of instability for breaking the replica symmetry in equilibrium when the number of couplings per spin is infinite. This correspondence is extended to the case of finite connectivity to determine the phase diagram, which is numerically validated.

[1]  H. Bethe Statistical Theory of Superlattices , 1935 .

[2]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[3]  R. Palmer,et al.  Solution of 'Solvable model of a spin glass' , 1977 .

[4]  D. Thouless,et al.  Stability of the Sherrington-Kirkpatrick solution of a spin glass model , 1978 .

[5]  M. W. Klein,et al.  Spin glasses in the Bethe-Peierls-Weiss and other mean-field approximations , 1979 .

[6]  G. Parisi The order parameter for spin glasses: a function on the interval 0-1 , 1980 .

[7]  D. Thouless,et al.  Spin-glass on a Bethe lattice. , 1986, Physical review letters.

[8]  M. Mézard,et al.  Mean-field theory of randomly frustrated systems with finite connectivity , 1987 .

[9]  P. Mottishaw,et al.  On the stability of randomly frustrated systems with finite connectivity , 1987 .

[10]  D. Sherrington,et al.  Graph bipartitioning and spin glasses on a random network of fixed finite valence , 1987 .

[11]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[12]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[13]  Nicolas Sourlas,et al.  Spin-glass models as error-correcting codes , 1989, Nature.

[14]  T. Watkin,et al.  THE STATISTICAL-MECHANICS OF LEARNING A RULE , 1993 .

[15]  Yoshiyuki Kabashima,et al.  Belief propagation vs. TAP for decoding corrupted messages , 1998 .

[16]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[17]  H. Nishimori,et al.  Statistical mechanics of image restoration and error-correcting codes. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Andrea Montanari,et al.  The statistical mechanics of turbo codes , 1999 .

[19]  D. Saad,et al.  Statistical mechanics of error-correcting codes , 1999 .

[20]  Saad,et al.  Typical performance of gallager-type error-correcting codes , 2000, Physical review letters.

[21]  Yoshiyuki Kabashima,et al.  Statistical physics of irregular low-density parity-check codes , 2000 .

[22]  D. Saad,et al.  Error-correcting code on a cactus: A solvable model , 2000, cond-mat/0005109.

[23]  H. Nishimori Statistical Physics of Spin Glasses and Information Processing , 2001 .

[24]  M. Mézard,et al.  The Bethe lattice spin glass revisited , 2000, cond-mat/0009418.

[25]  Toshiyuki Tanaka,et al.  Statistical mechanics of CDMA multiuser demodulation , 2001 .

[26]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.