Evaluation of TanDEM-X DEMs on selected Brazilian sites: Comparison with SRTM, ASTER GDEM and ALOS AW3D30

Abstract A first assessment of the TanDEM-X DEMs over Brazilian territory is presented through a comparison with SRTM, ASTER GDEM and ALOS AW3D30 DEMs in seven study areas with distinct geomorphological contexts, vegetation coverage, and land use. Visual analysis and elevation histograms point to a finer effective spatial (i.e., horizontal) resolution of TanDEM-X compared to SRTM and ASTER GDEM. In areas of open vegetation, TanDEM-X lower elevations indicate a deeper penetration of the radar signal. DEMs of differences (DoDs) allowed the identification of issues inherent to the production methods of the analyzed DEMs, such as mast oscillations in SRTM data and mismatch between adjacent scenes in ASTER GDEM and ALOS AW3D30. A systematic difference in elevations between TanDEM-X 12 m, TanDEM-X 30 m, and SRTM was observed in the steep slopes of the coastal ranges, related to the moving-window process used to resample the 12 m data to a 30 m pixel size. It is strongly recommended to produce a DoD with SRTM before using ASTER GDEM or ALOS AW3D30 in any analysis, to evaluate if the area of interest is affected by these problems. The DoDs also highlighted changes in land use in the time span between the acquisition of SRTM (2000) and TanDEM-X (2013) data, whether by natural causes or by human interference in the environment. The results show a high level of detail and consistency for TanDEM-X data, indicate that the effective horizontal resolution of SRTM is coarser than the nominal 30 m, and highlight the errors in ASTER GDEM and ALOS AW3D30 due to mismatch between adjacent scenes in the photogrammetric process.

[1]  Tim R. McVicar,et al.  The impact of misregistration on SRTM and DEM image differences , 2008 .

[2]  Mark A. Fonstad,et al.  Topographic structure from motion: a new development in photogrammetric measurement , 2013 .

[3]  Dean B. Gesch,et al.  VALIDATION OF THE ASTER GLOBAL DIGITAL ELEVATION MODEL VERSION 3 OVER THE CONTERMINOUS UNITED STATES , 2016 .

[4]  Gerhard Krieger,et al.  TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Ross S. Purves,et al.  The influence of elevation uncertainty on derivation of topographic indices , 2009 .

[6]  F. O'Loughlin,et al.  A multi-sensor approach towards a global vegetation corrected SRTM DEM product , 2016 .

[7]  J. Chandler,et al.  Minimising systematic error surfaces in digital elevation models using oblique convergent imagery , 2011 .

[8]  Achim Roth,et al.  Operational TanDEM-X DEM calibration and first validation results , 2012 .

[9]  Jie Shan,et al.  Evaluation of Recently Released Open Global Digital Elevation Models of Hubei, China , 2017, Remote. Sens..

[10]  G. Krieger,et al.  The TanDEM-X Mission: Earth Observation in 3D , 2013 .

[11]  Clyde R Greenwalt,et al.  PRINCIPLES OF ERROR THEORY AND CARTOGRAPHIC APPLICATIONS , 1962 .

[12]  S. Wechsler Uncertainties associated with digital elevation models for hydrologic applications: a review , 2006 .

[13]  M. Westoby,et al.  ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications , 2012 .

[14]  Takeo Tadono,et al.  Generation of High Resolution Global DSM from ALOS PRISM , 2014 .

[15]  Masanobu Shimada,et al.  Calibration of PRISM and AVNIR-2 Onboard ALOS “Daichi” , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Gerhard Krieger,et al.  Definition of ICESat Selection Criteria for Their Use as Height References for TanDEM-X , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Aylmer Johnson Plane and Geodetic Surveying , 2004 .

[18]  Benjamin Bräutigam,et al.  Height Accuracy for the First Part of the Global TanDEM-X DEM Data , 2015 .

[19]  Masanobu Shimada,et al.  Advanced Land Observing Satellite (ALOS) and Monitoring Global Environmental Change , 2010, Proceedings of the IEEE.

[20]  J. Bryan Blair,et al.  Validation of SRTM Elevations Over Vegetated and Non-vegetated Terrain Using Medium-Footprint Lidar , 2006 .

[21]  G. Krieger,et al.  The global forest/non-forest map from TanDEM-X interferometric SAR data , 2018 .

[22]  E. Rodríguez,et al.  A Global Assessment of the SRTM Performance , 2006 .

[23]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[24]  Carlos Henrique Grohmann,et al.  SRTM resample with short distance‐low nugget kriging , 2008, Int. J. Geogr. Inf. Sci..

[25]  Takeo Tadono,et al.  Status of “ALOS World 3D (AW3D)” global DSM generation , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[26]  James Westervelt,et al.  R.MAPCALC: An Algebra for GIS and Image Processing , 1994 .

[27]  S. Kanae,et al.  A high‐accuracy map of global terrain elevations , 2017 .

[28]  C. Petit,et al.  Techniques for quantifying the accuracy of gridded elevation models and for mapping uncertainty in digital terrain analysis , 2011 .

[29]  John D. Vona,et al.  Vegetation height estimation from Shuttle Radar Topography Mission and National Elevation Datasets , 2004 .

[30]  Carolina González,et al.  TANDEM-X height performance and data coverage , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[31]  Hannes Isaak Reuter,et al.  A first assessment of Aster GDEM tiles for absolute accuracy, relative accuracy and terrain parameters , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[32]  Timothy A. Warner,et al.  Comparison of DEMS derived from USGS DLG, SRTM, a statewide photogrammetry program, ASTER GDEM and LiDAR: implications for change detection , 2015 .

[33]  Akira Iwasaki,et al.  Characteristics of ASTER GDEM version 2 , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[34]  C. Willmott,et al.  Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance , 2005 .

[35]  David A. Seal,et al.  The Shuttle Radar Topography Mission , 2007 .

[36]  ScienceDirect Physics and chemistry of the earth. Part A, Solid earth and geodesy , 1999 .

[37]  Veronica Tofani,et al.  Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning , 2017, Geoenvironmental Disasters.

[38]  Yasushi Yamaguchi,et al.  Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 1998, IEEE Trans. Geosci. Remote. Sens..

[39]  S. Robson,et al.  Mitigating systematic error in topographic models derived from UAV and ground‐based image networks , 2014 .

[40]  Carlos Henrique Grohmann,et al.  Influence of cell size on volume calculation using digital terrain models: A case of coastal dune fields , 2013 .

[41]  Ute Beyer,et al.  Remote Sensing And Image Interpretation , 2016 .

[42]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[43]  O. Phillips,et al.  Extinction risk from climate change , 2004, Nature.

[44]  Christiane Schmullius,et al.  TanDEM-X IDEM precision and accuracy assessment based on a large assembly of differential GNSS measurements in Kruger National Park, South Africa , 2016 .

[45]  Anna Wendleder,et al.  TanDEM-X Water Indication Mask: Generation and First Evaluation Results , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[46]  K. Oost,et al.  Reproducibility of UAV-based earth topography reconstructions based on Structure-from-Motion algorithms , 2016 .

[47]  S. Robson,et al.  Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application , 2012 .

[48]  I. Moore,et al.  Digital terrain modelling: A review of hydrological, geomorphological, and biological applications , 1991 .

[49]  Michael J. Oimoen,et al.  Validation of the ASTER Global Digital Elevation Model Version 2 over the conterminous United States , 2012 .

[50]  Peter L. Guth,et al.  Geomorphometry from SRTM: Comparison to NED , 2006 .

[51]  Marco Ciolli,et al.  Pygrass: An Object Oriented Python Application Programming Interface (API) for Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS) , 2013, ISPRS Int. J. Geo Inf..

[52]  Gerhard Krieger,et al.  Generation and performance assessment of the global TanDEM-X digital elevation model , 2017 .

[53]  K. Nikolakopoulos,et al.  SRTM vs ASTER elevation products. Comparison for two regions in Crete, Greece , 2006 .

[54]  Maxim Neumann,et al.  Validation of the new SRTM digital elevation model (NASADEM) with ICESAT/GLAS over the United States , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[55]  David J. Harding,et al.  SRTM C-band and ICESat Laser Altimetry Elevation Comparisons as a Function of Tree Cover and Relief , 2006 .

[56]  Russell Congalton,et al.  Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Second Edition , 1998 .

[58]  Anna Wendleder,et al.  Validation of the absolute height accuracy of TanDEM-X DEM for moderate terrain , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[59]  Yumin Chen,et al.  A scale-adaptive DEM for multi-scale terrain analysis , 2013, Int. J. Geogr. Inf. Sci..

[60]  Pratima Pandey,et al.  Comparison of DEMs derived from TanDEM-X and SRTM-C for Himalayan terrain , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[61]  Nick Barnes Publish your computer code: it is good enough , 2010, Nature.

[62]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[63]  Tomislav Hengl,et al.  Chapter 4 Preparation of DEMs for Geomorphometric Analysis , 2009 .

[64]  Markus Metz,et al.  GRASS GIS: A multi-purpose open source GIS , 2012, Environ. Model. Softw..

[65]  Gerhard Krieger,et al.  Coherence evaluation of TanDEM-X interferometric data , 2012 .

[66]  J. C. Gallant,et al.  Enhancing the SRTM Da ta for Australia , 2009 .

[67]  Hiroji Tsu,et al.  The ASTER Global DEM , 2010 .

[68]  Brian Klinkenberg,et al.  A Spatial Filter for the Removal of Striping Artifacts in Digital Elevation Models , 2003 .

[69]  Michael J. Oimoen,et al.  ASTER Global Digital Elevation Model Version 2 - summary of validation results , 2011 .

[70]  Takahiro Sayama,et al.  CORRECTION OF SRTM DEM ARTEFACTS BY FOURIER TRANSFORM FOR FLOOD INUNDATION MODELING , 2013 .

[71]  Carlos Henrique Grohmann,et al.  Effects of spatial resolution on slope and aspect derivation for regional-scale analysis , 2015, Comput. Geosci..

[72]  N. K. Pavlis,et al.  The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96 , 1998 .

[73]  D. Unwin Geographical information systems and the problem of 'error and uncertainty' , 1995 .

[74]  K. Cook An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection , 2017 .

[75]  Kenji Matsuura,et al.  On the use of dimensioned measures of error to evaluate the performance of spatial interpolators , 2006, Int. J. Geogr. Inf. Sci..

[76]  Michael E. Hodgson,et al.  Effects of lidar post‐spacing and DEM resolution to mean slope estimation , 2009, Int. J. Geogr. Inf. Sci..

[77]  Michele Martone,et al.  The TanDEM-X DEM Mosaicking: Fusion of Multiple Acquisitions Using InSAR Quality Parameters , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[78]  Gerhard Krieger,et al.  TanDEM-X: A radar interferometer with two formation-flying satellites , 2013 .

[79]  T. Farr,et al.  Shuttle radar topography mission produces a wealth of data , 2000 .

[80]  Travis E. Oliphant,et al.  Guide to NumPy , 2015 .

[81]  Mark W. Smith,et al.  From experimental plots to experimental landscapes: topography, erosion and deposition in sub‐humid badlands from Structure‐from‐Motion photogrammetry , 2015 .

[82]  G. Miliaresis,et al.  An evaluation of the accuracy of the ASTER GDEM and the role of stack number: a case study of Nisiros Island, Greece , 2011 .

[83]  Takeo Tadono,et al.  PRECISE GLOBAL DEM GENERATION BY ALOS PRISM , 2014 .

[84]  Carlos Henrique Grohmann,et al.  Comparison of roving-window and search-window techniques for characterising landscape morphometry , 2009, Comput. Geosci..

[85]  Ralph Rosenbauer,et al.  Evaluating the Quality and Accuracy of TanDEM-X Digital Elevation Models at Archaeological Sites in the Cilician Plain, Turkey , 2014, Remote. Sens..

[86]  Maxim Neumann,et al.  NASADEM GLOBAL ELEVATION MODEL: METHODS AND PROGRESS , 2016 .

[87]  Birgit Wessel,et al.  TanDEM-X Ground Segment – DEM Products Specification Document , 2013 .

[88]  G. Miliaresis,et al.  Vertical accuracy of the SRTM DTED level 1 of Crete , 2005 .

[89]  Y. Arnaud,et al.  Biases of SRTM in high‐mountain areas: Implications for the monitoring of glacier volume changes , 2006 .

[90]  J. V. Sickle GPS for Land Surveyors , 2001 .

[91]  Gerhard Krieger,et al.  Relative height error analysis of TanDEM-X elevation data , 2012 .

[92]  Gerhard Krieger,et al.  TanDEM-X: The New Global DEM Takes Shape , 2014, IEEE Geoscience and Remote Sensing Magazine.

[93]  Jakob van Zyl,et al.  The Shuttle Radar Topography Mission (SRTM): a breakthrough in remote sensing of topography , 2001 .

[94]  Michael N. DeMers,et al.  Fundamentals of Geographic Information Systems , 1996 .

[95]  Frédérique Seyler,et al.  Absolute and relative height-pixel accuracy of SRTM-GL1 over the South American Andean Plateau , 2016 .

[96]  N. Ritter,et al.  The GeoTiff data interchange standard for raster geographic images , 1997 .

[97]  Wes McKinney,et al.  pandas: a Foundational Python Library for Data Analysis and Statistics , 2011 .

[98]  A. Roth,et al.  The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar , 2003 .