13. Cu(InGa)Se2 Solar Cells

[1]  Steven S. Hegedus,et al.  Thin‐film solar cells: device measurements and analysis , 2004 .

[2]  Lars Stolt,et al.  ZnO/CdS/CuInSe2 thin‐film solar cells with improved performance , 1993 .

[3]  V. Alberts Band gap engineering in polycrystalline Cu(In,Ga)(Se,S)2 chalcopyrite thin films , 2004 .

[4]  D. Schmid,et al.  Influence of substrates on the electrical properties of Cu(In,Ga)Se2 thin films , 1996 .

[5]  Jinwoo Lee,et al.  The determination of carrier mobilities in CIGS photovoltaic devices using high-frequency admittance measurements , 2005 .

[6]  Gérard Durand,et al.  Cadmium recovery and recycling from chemical bath deposition of CdS thin layers , 2002 .

[7]  A. Rockett,et al.  Oxygen in Solution Grown CdS Films for Thin Film Solar Cells , 1996 .

[8]  K. Taretto,et al.  Numerical simulation of carrier collection and recombination at grain boundaries in Cu(In,Ga)Se2 solar cells , 2008 .

[9]  L. Stolt,et al.  Impurities in Chemical Bath Deposited CdS Films for Cu ( In , Ga ) Se2 Solar Cells and Their Stability , 1996 .

[10]  D. Haneman Properties and applications of copper indium diselenide , 1988 .

[11]  T. Aramoto,et al.  Interface control to enhance the fill factor over 0.70 in a large-area CIS-based thin-film PV technology , 2009 .

[12]  R. Wieting CIS product introduction: Progress and challenges , 2008 .

[13]  A. Ennaoui,et al.  XPS, TEM and NRA investigations of Zn(Se,OH)/Zn(OH)2 films on Cu(In,Ga)(S,Se)2 substrates for highly efficient solar cells , 2003 .

[14]  A. Halverson,et al.  Study of the Electronic Properties of Matched Na-Containing and Reduced-Na CuInGaSe 2 Samples Using Junction Capacitance Methods , 2007 .

[15]  Sigurd Wagner,et al.  Efficient CuInSe2/CdS solar cells , 1975 .

[16]  J. Palm,et al.  CIS module pilot processing applying concurrent rapid selenization and sulfurization of large area thin film precursors , 2003 .

[17]  Y. S. Park,et al.  Cadmium−diffused CuInSe2 junction diode and photovoltaic detection , 1975 .

[18]  Rommel Noufi,et al.  Critical issues in the design of polycrystalline, thin‐film tandem solar cells , 2003 .

[19]  U. Rau,et al.  Electronic properties of ZnO/CdS/Cu(In,Ga)Se2 solar cells — aspects of heterojunction formation , 2001 .

[20]  R. D. Tomlinson,et al.  Relation between electrical properties and composition in CuInSe2 single crystals , 1990 .

[21]  A. Rockett,et al.  Epitaxial growth of Cu(In, Ga)Se2 on GaAs(110) , 2002 .

[22]  Steve Hegedus,et al.  Thin film solar modules: the low cost, high throughput and versatile alternative to Si wafers , 2006 .

[23]  A. Rothwarf,et al.  Effects of a voltage‐dependent light‐generated current on solar cell measurements: CuInSe2/Cd(Zn)S , 1984 .

[24]  U. Rau Tunneling-enhanced recombination in Cu(In, Ga)Se2 heterojunction solar cells , 1999 .

[25]  Plasma etching: Safety, health and environmental considerations , 1995 .

[26]  Rosaria Ciriminna,et al.  BIPV: merging the photovoltaic with the construction industry , 2010 .

[27]  L. Stolt,et al.  Enhanced back reflectance and quantum efficiency in Cu(In,Ga)Se2 thin film solar cells with a ZrN back reflector , 2004 .

[28]  P. Fons,et al.  Control of the thin film properties of Cu(In,Ga)Se2 using water vapor introduction during growth , 2006 .

[29]  W. Shafarman,et al.  Cu(InGa)Se2 solar cells on a flexible polymer web , 2005 .

[30]  Vasilis Fthenakis,et al.  Sustainability of photovoltaics: The case for thin-film solar cells , 2009 .

[31]  J. Werner,et al.  Radiation resistance of Cu(In,Ga)Se2 solar cells under 1-MeV electron irradiation , 2001 .

[32]  A. Zunger,et al.  Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals , 1998 .

[33]  J. Seto The electrical properties of polycrystalline silicon films , 1975 .

[34]  J. Sites,et al.  Calculated effect of conduction‐band offset on CuInSe2 solar‐cell performance , 2008 .

[35]  Jürgen H. Werner,et al.  Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells , 2003 .

[36]  R. Potter Enhanced photocurrent ZnO/CdS/CuInSe2 solar cells , 1986 .

[37]  Brian E. McCandless,et al.  Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap , 1996 .

[38]  W. Jaegermann,et al.  Influence of Cu(In, Ga)Se2 band gap on the valence band offset with CdS , 2003 .

[39]  M. Nicolet,et al.  Microstructure of polycrystalline CuInSe2/Cd(Zn)S heterojunction solar cells , 1992 .

[40]  D. Lincot,et al.  CD-free Cu(In,Ga)Se2 thin-film solar modules with In2S3 buffer layer by ALCVD , 2003 .

[41]  I. Repins,et al.  19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor , 2008 .

[42]  Uwe Rau,et al.  A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors , 2001 .

[43]  S. Lin,et al.  Large Grain Copper Indium Diselenide Films , 1984 .

[44]  J. Thornton,et al.  Reactive sputtered CuInSe2 , 1988 .

[45]  Jonas Hedström,et al.  Coevaporation with a rate control system based on a quadrupole mass spectrometer , 1985 .

[46]  A. Forchel,et al.  Minority-carrier lifetime and efficiency of Cu(In,Ga)Se2 solar cells , 1998 .

[47]  Yanfa Yan,et al.  Grain-boundary physics in polycrystalline CuInSe2 revisited: experiment and theory. , 2006, Physical review letters.

[48]  U. Rau,et al.  Interdependence of absorber composition and recombination mechanism in Cu(In,Ga)(Se,S)2 heterojunction solar cells , 2002 .

[49]  J. Sites,et al.  Diode quality factor determination for thin-film solar cells , 1989 .

[50]  Michael Eickenberg,et al.  Polarization of defect related optical transitions in chalcopyrites , 2008 .

[51]  H. Schock,et al.  Influence of the Ga-content on the bulk defect densities of Cu(In,Ga)Se2 , 2001 .

[52]  I. Eisgruber,et al.  Manufacturable Large Area CdS Thin Films for Solar Cell Applications Monitored with Optical Emission Spectroscopy , 1999 .

[53]  Rommel Noufi,et al.  Properties of ZnO/CdS/CuInSe2 solar cells with improved performance , 2004 .

[54]  A. Zunger,et al.  Band offsets at the CdS/CuInSe2 heterojunction , 1993 .

[55]  R. Klenk Characterisation and modelling of chalcopyrite solar cells , 2001 .

[56]  M. León,et al.  Optical functions of chalcopyrite CuGaxIn1-xSe2 alloys , 2002 .

[57]  Leonard J. Brillson,et al.  Direct observation of copper depletion and potential changes at copper indium gallium diselenide grain boundaries , 2005 .

[58]  G. Müller,et al.  Kinetics of CIS-formation studied in situ by thin film calorimetry , 2000 .

[59]  Jinwoo Lee,et al.  Detailed study of metastable effects in the Cu(InGa)Se2 alloys: Test of defect creation models , 2005 .

[60]  S. Siebentritt,et al.  Defects and transport in the wide gap chalcopyrite CuGaSe2 , 2003 .

[61]  David Cahen,et al.  Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance , 1998 .

[62]  A. Zunger,et al.  Effects of Na on the electrical and structural properties of CuInSe2 , 1999 .

[63]  Hans Zogg,et al.  Na incorporation into Cu(In,Ga)Se2 for high-efficiency flexible solar cells on polymer foils , 2005 .

[64]  K. L. Chopra,et al.  Growth Kinetics and Polymorphism of Chemically Deposited CdS Films , 1980 .

[65]  S. Nishiwaki,et al.  Self-compensation of intrinsic defects in the ternary semiconductor CuGaSe 2 , 2004 .

[66]  A. Kylner The Chemical Bath Deposited CdS / Cu ( In , Ga ) Se2 Interface as Revealed by X‐Ray Photoelectron Spectroscopy , 1999 .

[67]  D. Lincot,et al.  High-resolution transmission electron microscopy study of chemically deposited cadmium sulphide thin films from aqueous ammonia solutions , 1993 .

[68]  K. Chattopadhyay,et al.  Burstein-Moss shift in CulnSe2 films , 1991 .

[69]  Suhuai Wei,et al.  Electrically benign behavior of grain boundaries in polycrystalline CuInSe2 films. , 2007, Physical review letters.

[70]  H. Schock,et al.  Distribution of Defects in Polycrytalline Chalcopyrite Thin Films , 1996 .

[71]  C. Bostedt,et al.  Observation of intermixing at the buried CdS/Cu(In, Ga)Se2 thin film solar cell heterojunction , 1999 .

[72]  P. Meyers,et al.  Polycrystalline heterojunction solar cells: A device perspective , 1996 .

[73]  L. Kazmerski,et al.  Formation, growth, and stability of the CdS/CuInSe2 interface , 1982 .

[74]  U. Rau,et al.  Composition dependence of defect energies and band alignments in the Cu(In1−xGax)(Se1−ySy)2 alloy system , 2002 .

[75]  Alex Zunger,et al.  Theory of the band-gap anomaly in AB C 2 chalcopyrite semiconductors , 1984 .

[76]  M. Lux‐Steiner,et al.  MOCVD as a dry deposition method of ZnSe buffers for Cu(In,Ga)(S,Se)2 solar cells , 2004 .

[77]  Y. Hashimoto,et al.  Solar cells with Cu(In1−xGax)S2 thin films prepared by sulfurization , 2001 .

[78]  W. Jaegermann,et al.  Junction formation of CuInSe2 with CdS: A comparative study of “dry” and “wet” interfaces , 2007 .

[79]  P. Fons,et al.  Cu(In1−xGax)Se2 growth studies by in situ spectroscopic light scattering , 2003 .

[80]  Kim W. Mitchell,et al.  CuInSe/sub 2/ cells and modules , 1990 .

[81]  H. Schock,et al.  Low Pressure Vapor Phase Selenization of Cu-in Films without H2Se , 1991 .

[82]  Robert W. Birkmire,et al.  CuInSe2 for photovoltaic applications , 1991 .

[83]  W. Shafarman,et al.  Incongruent reaction of Cu–(InGa) intermetallic precursors in H2Se and H2S , 2007 .

[84]  A. Ennaoui,et al.  Recombination mechanisms in highly efficient thin film Zn(S,O)/Cu(In,Ga)S2 based solar cells , 2009 .

[85]  A. Rothwarf,et al.  Interface charging and solar‐cell characteristics: CuInSe2/CdS , 1985 .

[86]  N. F. Cooray,et al.  Optimization of Al-doped ZnO Window Layers for Large-Area Cu(InGa)Se2-Based Modules by RF/DC/DC Multiple Magnetron Sputtering , 1999 .

[87]  A. Rockett,et al.  Electronic effects of sodium in epitaxial CuIn1−xGaxSe2 , 1997 .

[88]  J. Galibert,et al.  Shubnikov-De Haas oscillations in n-CuInSe2 , 1993 .

[89]  A. Rothwarf,et al.  Time-dependent open-circuit voltage in CuInSe2/CdS solar cells: theory and experiment , 1987 .

[90]  M. Lux‐Steiner,et al.  Do we really need another PL study of CuInSe2 , 2004 .

[91]  T. Nakada,et al.  Direct evidence of Cd diffusion into Cu(In, Ga)Se2 thin films during chemical-bath deposition process of CdS films , 1999 .

[92]  D. Cahen,et al.  Defect chemical explanation for the effect of air anneal on CdS/CuInSe2 solar cell performance , 1989 .

[93]  C. Azar,et al.  Material constraints for thin-film solar cells , 1998 .

[94]  W. Shafarman,et al.  Bulk and metastable defects in CuIn1−xGaxSe2 thin films using drive-level capacitance profiling , 2004 .

[95]  Lars Stolt,et al.  Cu(In,Ga)Se2-based thin-film photovoltaic modules optimized for long-term performance , 2003 .

[96]  Rommel Noufi,et al.  Band-gap engineering in Cu(In,Ga) Se2 thin films grown from (In,Ga)2Se3 precursors , 1996 .

[97]  S. Siebentritt Wide gap chalcopyrites: material properties and solar cells , 2002 .

[98]  H. Schock,et al.  Cu ( In , Ga ) Se 2 SOLAR CELLS , 2001 .

[99]  H. Schock,et al.  Substrate influence on Cu(In,Ga)Se2 film texture , 2005 .

[100]  Lars Stolt,et al.  Design of grided Cu(In,Ga)Se2 thin-film PV modules , 2001 .

[101]  A. Rockett,et al.  Device-quality CuInSe2 produced by the hybrid process , 1989 .

[102]  R. Klenk,et al.  A model for the successful growth of polycrystalline films of CuInSe2 by multisource physical vacuum evaporation , 1993 .

[103]  H. Schock,et al.  ZnO/InxSy/Cu(In,Ga)Se2 solar cells fabricated by coherent heterojunction formation , 2005 .

[104]  B. Tell,et al.  Room‐Temperature Electrical Properties of Ten I‐III‐VI2 Semiconductors , 1972 .

[105]  Sigurd Wagner,et al.  CuInSe2/CdS heterojunction photovoltaic detectors , 1974 .

[106]  R. C. Kainthla,et al.  Solution Growth of CdSe and PbSe Films , 1980 .

[107]  A. Ennaoui,et al.  High-efficiency Cd-free CIGSS thin-film solar cells with solution grown zinc compound buffer layers , 2001 .

[108]  J. Werner,et al.  High quality baseline for high efficiency, Cu(In1−x,Gax)Se2 solar cells , 2007 .

[109]  R. Scheer,et al.  CuInS2 based thin film solar cell with 10.2% efficiency , 1993 .

[110]  Alex Zunger,et al.  Light- and bias-induced metastabilities in Cu(In,Ga)Se2 based solar cells caused by the (VSe-VCu) vacancy complex , 2006 .

[111]  M. Bodegård,et al.  Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance , 2003 .

[112]  Kosuke Kurokawa,et al.  A comparative study on cost and life‐cycle analysis for 100 MW very large‐scale PV (VLS‐PV) systems in deserts using m‐Si, a‐Si, CdTe, and CIS modules , 2008 .

[113]  C. Abernathy,et al.  Production of single phase chalcopyrite CuInSe2 by spray pyrolysis , 1984 .

[114]  S. Chichibu,et al.  The use of diethylselenide as a less-hazardous source in CuInGaSe2 photoabsorbing alloy formation by selenization of metal precursors premixed with Se , 2006 .

[115]  K. Kushiya,et al.  Role of incorporated sulfur into the surface of Cu(InGa)Se2 thin-film absorber , 2001 .

[116]  David C. Paine,et al.  Applications and Processing of Transparent Conducting Oxides , 2000 .

[117]  W. Shafarman,et al.  Optical characterization of CuIn1−xGaxSe2 alloy thin films by spectroscopic ellipsometry , 2003 .

[118]  H. Steinberger Health, safety and environmental risks from the operation of CdTe and CIS thin-film modules , 1998 .

[119]  N. Kohara,et al.  Chemical bath deposition of Cds buffer layer for GIGS solar cells , 1998 .

[120]  Su-Huai Wei,et al.  Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys , 1995 .

[121]  Su-Huai Wei,et al.  Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties , 1998 .

[122]  R. Klenk,et al.  Quantitative analysis of cell transparency and its implications for the design of chalcopyrite-based tandems , 2009 .

[123]  Martin A. Green,et al.  Solar cell efficiency tables (Version 34) , 2009 .

[124]  R. Birkmire,et al.  Reaction analysis of the formation of CuInSe2 films in a physical vapor deposition reactor , 1998 .

[125]  Rommel Noufi,et al.  Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin‐film solar cells , 1999 .

[126]  R. Birkmire,et al.  Chemical reaction analysis of copper indium selenization , 1996 .

[127]  D. Suri,et al.  X-ray study of CuGaxIn1−xSe2 solid solutions , 1989 .

[128]  M. Ch. Lux-Steiner,et al.  Radiative recombination via intrinsic defects in CuxGaySe2 , 2001 .

[129]  Sylvain Marsillac,et al.  High-efficiency solar cells based on Cu(InAl)Se2 thin films , 2002 .

[130]  W. Jaegermann,et al.  Formation and electronic properties of the CdS/CuInSe2 (011) heterointerface studied by synchrotron‐induced photoemission , 1995 .

[131]  E. Umbach,et al.  Flat conduction-band alignment at the CdS/CuInSe2 thin-film solar-cell heterojunction , 2001 .

[132]  T. Törndahl,et al.  Atomic layer deposition of Zn1−xMgxO buffer layers for Cu(In,Ga)Se2 solar cells , 2007 .

[133]  T. Nakada,et al.  Improved Jsc in CIGS thin film solar cells using a transparent conducting ZnO:B window layer , 2001 .

[134]  A. Zunger,et al.  Stabilization of Ternary Compounds via Ordered Arrays of Defect Pairs , 1997 .

[135]  K. Djessas,et al.  Temperature distribution and transport mode in a close-spaced vapor transport reactor for CuInSe2 depositions , 1998 .

[136]  Vasilis Fthenakis,et al.  Toxic materials released from photovoltaic modules during fires: Health risks , 1990 .

[137]  V. Alberts A comparison of the material and device properties of homogeneous and compositional-graded Cu(In,Ga)(Se,S) 2 chalcopyrite thin films , 2007 .

[138]  U. Rau,et al.  Persistent photoconductivity in Cu(In,Ga)Se2 heterojunctions and thin films prepared by sequential deposition , 1998 .

[139]  Tadashi Yoshida,et al.  Realization of Giant Optical Rotatory Power for Red and Infrared Light using III2VI3Compound Semiconductor (GaxIn1-x)2Se3 , 1996 .

[140]  D. Lincot,et al.  Towards Better Understanding of High Efficiency Cd-free CIGS Solar Cells Using Atomic Layer Deposited Indium Sulfide Buffer Layers , 2003 .

[141]  D. Cahen,et al.  Direct evidence for diffusion and electromigration of Cu in CuInSe2 , 1997 .

[142]  A. Rockett,et al.  Effect of Ga content on defect states in CuIn 1¿x Ga x Se 2 photovoltaic devices , 2002 .

[143]  I. M. Robertson,et al.  Void formation and surface energies in Cu(InGa)Se2 , 2006 .

[144]  David W. Niles,et al.  Direct observation of Na and O impurities at grain surfaces of CuInSe2 thin films , 1999 .

[145]  A. Zunger,et al.  Metal-dimer atomic reconstruction leading to deep donor states of the anion vacancy in II-VI and chalcopyrite semiconductors. , 2004, Physical review letters.

[146]  Lars Stolt,et al.  A novel cadmium free buffer layer for Cu(In,Ga)Se2 based solar cells , 1996 .

[147]  M. Döbeli,et al.  Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells , 2005 .

[148]  A. Rockett,et al.  Near-surface defect distributions in Cu(In,Ga)Se2 , 2003 .

[149]  H. Neumann,et al.  Lattice vibrational, thermal and mechanical properties of CuInSe2 , 1986 .

[150]  M. Igalson Metastable Defect Distributions in CIGS Solar Cells and Their Impact on Device Efficiency , 2007 .

[151]  T. Okuda,et al.  In-situ Characterization of As-grown Surface of CIGS Films , 2007 .

[152]  A. Eicke,et al.  Diffusion barriers for CIGS solar cells on metallic substrates , 2003 .

[153]  S. K. Deb,et al.  Electronic properties versus composition of thin films of CuInSe2 , 1984 .

[154]  R. Klenk,et al.  PREPARATION OF HOMOGENEOUS CU(INGA)SE2 FILMS BY SELENIZATION OF METAL PRECURSORS IN H2SE ATMOSPHERE , 1995 .

[155]  K. Granath,et al.  Growth of Cu(In,Ga)Se2 thin films by coevaporation using alkaline precursors , 2000 .

[156]  S. Siebentritt,et al.  Reconciliation of luminescence and Hall measurements on the ternary semiconductor CuGaSe2 , 2005 .

[157]  A. Rockett,et al.  A TEM study of the crystallography and defect structures of single crystal and polycrystalline copper indium diselenide , 1991 .

[158]  T. Nakada,et al.  Novel device structure for Cu(In,Ga)Se2 thin film solar cells using transparent conducting oxide back and front contacts , 2004 .

[159]  L. Kazmerski,et al.  Thin‐film CuInSe2/CdS heterojunction solar cells , 1976 .

[160]  A. Zunger,et al.  Anomalous grain boundary physics in polycrystalline CuInSe2: the existence of a hole barrier. , 2003, Physical review letters.

[161]  F. Smole,et al.  Band‐gap engineering in CdS/Cu(In,Ga)Se2 solar cells , 1996 .

[162]  S. Wagner,et al.  Motion of p‐n junctions in CuInSe2 , 1976 .

[163]  P. Fons,et al.  In situ diagnostic methods for thin‐film fabrication: utilization of heat radiation and light scattering , 2004 .

[164]  W. Jaegermann,et al.  Fermi-level-dependent defect formation in Cu-chalcopyrite semiconductors , 1999 .

[165]  D. Schmid,et al.  Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2 , 1993 .

[166]  Hans Zogg,et al.  Efficiency enhancement of Cu(In,Ga)Se2 solar cells due to post-deposition Na incorporation , 2004 .

[167]  J. Guillemoles,et al.  Electron spin resonance studies of Cu(In,Ga)Se2 thin films , 2003 .

[168]  W. Jaegermann,et al.  Photoemission study and band alignment of the CuInSe2(001)/CdS heterojunction , 2004 .

[169]  Wolfgang Riedl,et al.  Rapid CIS-process for high efficiency PV-modules: development towards large area processing , 2001 .

[170]  Harry Hahn,et al.  Untersuchungen über ternäre Chalkogenide. V. Über einige ternäre Chalkogenide mit Chalkopyritstruktur , 1953 .

[171]  H. Weinert,et al.  Infrared Faraday Effect in n-Type CuInSe2 , 1977 .

[172]  M. Lux‐Steiner,et al.  Replacement of the CBD-CdS buffer and the sputtered i-ZnO layer by an ILGAR-ZnO WEL: optimization of the WEL deposition , 2003 .

[173]  S. Guo,et al.  TiN and TiO2:Nb thin film preparation using hollow cathode sputtering with application to solar cells , 2006 .

[174]  N. Kohara,et al.  Real time composition monitoring methods in physical vapor deposition of Cu(In,Ga)Se{sub 2} thin films , 1996 .

[175]  Hole transport mechanisms in CuGaSe2 , 2005 .

[176]  S. Nishiwaki,et al.  Solar Cells Based on PVD Grown CuGaSe 2 – Absorber and Device Properties , 2001 .

[177]  Marcel A. J. Somers,et al.  Stress, strain, and microstructure of sputter‐deposited Mo thin films , 1991 .

[178]  A. Zunger,et al.  A phenomenological model for systematization and prediction of doping limits in II–VI and I–III–VI2 compounds , 1998 .

[179]  T. Nakada,et al.  Novel Wide-Band-Gap Ag(In 1-x Ga x )Se 2 Thin Film Solar Cells , 2005 .

[180]  C. Persson Anisotropic hole-mass tensor of CuIn1-xGax(S,Se)(2) : Presence of free carriers narrows the energy gap , 2008 .

[181]  T. Wada Microstructural characterization of high-efficiency Cu(In,Ga)Se2 solar cells , 1997 .

[182]  K. Jones,et al.  Microstructural properties of Cu(In,Ga)Se2 thin films used in high-efficiency devices , 2001 .

[183]  Uwe Rau,et al.  Grain boundaries in Cu(In, Ga)(Se, S)2 thin-film solar cells , 2009 .

[184]  A. Rockett,et al.  The behaviour of Na implanted into Mo thin films during annealing , 1999 .

[185]  T. Vincent,et al.  In situ X-ray fluorescence used for real-time control of CuInxGa1−xSe2 thin film composition , 2002 .

[186]  A. D. Vos,et al.  ON THE CDS/CUINSE2 CONDUCTION-BAND DISCONTINUITY. , 1995 .

[187]  Volker Probst,et al.  Second generation CIS solar modules , 2004 .

[188]  T. Negami,et al.  Composition monitoring method in CuInSe2 thin film preparation , 1995 .

[189]  R. Herberholz,et al.  Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions , 1996 .

[190]  T. Ciszek Growth and properties of CuInSe2 crystals produced by chemical vapor transport with iodine , 1984 .

[191]  Alex Zunger,et al.  Intrinsic DX centers in ternary chalcopyrite semiconductors. , 2008, Physical review letters.

[192]  P. W. Li,et al.  Dielectric constant of CuInSe2 by capacitance measurements , 1979 .

[193]  Wyatt K. Metzger,et al.  Grain-boundary recombination in Cu(In,Ga)Se2 solar cells , 2005 .

[194]  K. Murali Preparation and characterization of chemically deposited CuInSe2 films , 1988 .

[195]  M. Bär,et al.  Spray‐ILGAR indium sulfide buffers for Cu(In,Ga)(S,Se)2 solar cells , 2005 .

[196]  J. Abushama,et al.  Improved performance in ZnO/CdS/CuGaSe2 thin‐film solar cells , 2003 .

[197]  H. Bardeleben The chemistry of structural defects in CuInSe2 , 1986 .

[198]  Bulent M. Basol,et al.  Low cost methods for the production of semiconductor films for CuInSe2/CdS solar cells☆ , 1987 .

[199]  Susanne Siebentritt,et al.  A stacked chalcopyrite thin‐film tandem solar cell with 1.2 V open‐circuit voltage , 2003 .

[200]  A. Efimov,et al.  Lifetimes and configuration mixing in 110Cd , 1999 .

[201]  A. Weber,et al.  In situ investigation of the formation of Cu(In,Ga)Se2 from selenised metallic precursors by X-ray diffraction—The impact of Gallium, Sodium and Selenium excess , 2005 .

[202]  W. Shafarman,et al.  Effect of substrate temperature and depostion profile on evaporated Cu(InGa)Se2 films and devices , 2000 .

[203]  V. Riede,et al.  Hole Effective Masses in CuInSe2 , 1981 .

[204]  Analysis of transient photocurrents in Cu(In,Ga)Se2 thin film solar cells , 1997 .

[205]  H. Schock,et al.  Impact of the Ga concentration on the microstructure of CuIn1–x Gax Se2 , 2008 .

[206]  I. Repins,et al.  Long lifetimes in high-efficiency Cu(In,Ga)Se2 solar cells , 2008 .

[207]  A. Yamada,et al.  Polycrystalline Cu(InGa)Se2 Thin-Film Solar Cells with ZnSe Buffer Layers , 1995 .

[208]  Charles W. Smith,et al.  Preparation and properties of CuInS2 thin films produced by exposing sputtered Cu‐In films to an H2S atmosphere , 1979 .

[209]  D. Lincot,et al.  Chemical Bath Deposition of Cadmium Sulfide Thin Films. In Situ Growth and Structural Studies by Combined Quartz Crystal Microbalance and Electrochemical Impedance Techniques , 1992 .

[210]  S. Nishiwaki,et al.  Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells , 2001 .

[211]  B. Basol,et al.  Flexible and light weight copper indium diselenide solar cells on polyimide substrates , 1996 .

[212]  M. Powalla,et al.  Approaches to flexible CIGS thin-film solar cells , 2005 .

[213]  U. Rau,et al.  Fermi level pinning at CdS/Cu(In,Ga)(Se,S)2 interfaces: effect of chalcopyrite alloy composition , 2003 .

[214]  M. C. Joliet,et al.  Laser-induced reaction in CuInSe systems , 1989 .

[215]  H. Schock,et al.  Influence of the selenium flux on the growth of Cu(In,Ga)Se2 thin films , 2003 .

[216]  J. Werner,et al.  Back surface band gap gradings in Cu(In, Ga)Se2 solar cells , 2001 .

[217]  M. Konagai,et al.  High-efficiency Cu(In,Ga)Se2 thin-film solar cells with a novel In(OH)3:Zn2+ buffer layer , 2003 .

[218]  G. D. Mooney,et al.  Formation of CuInSe2 thin films by rapid thermal recrystallization , 1991 .

[219]  Mikko Ritala,et al.  Atomic layer deposition (ALD): from precursors to thin film structures , 2002 .

[220]  R. Rocheleau,et al.  A chemical reaction model for physical vapor deposition of compound semiconductor films , 1987 .