Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters

The Kennaugh-Huynen scattering matrix con-diagonalization is projected into the Pauli basis to derive a new scattering vector model for the representation of coherent target scattering. This model permits a polarization basis invariant representation of coherent target scattering in terms of five independent target parameters, the magnitude and phase of the symmetric scattering type introduced in this paper, and the maximum polarization parameters (orientation, helicity, and maximum return). The new scattering vector model served for the assessment of the Cloude-Pottier incoherent target decomposition. Whereas the Cloude-Pottier scattering type alpha and entropy H are roll invariant, beta and the so-called target-phase parameters do depend on the target orientation angle for asymmetric scattering. The scattering vector model is then used as the basis for the development of new coherent and incoherent target decompositions in terms of unique and roll-invariant target parameters. It is shown that both the phase and magnitude of the symmetric scattering type should be used for an unambiguous description of symmetric target scattering. Target helicity is required for the assessment of the symmetry-asymmetry nature of target scattering. The symmetric scattering type phase is shown to be very promising for wetland classification in particular, using polarimetric Convair-580 synthetic aperture radar data collected over the Ramsar Mer Bleue wetland site to the east of Ottawa, Ontario, Canada

[1]  R. K. Hawkins,et al.  The CCRS Airborne SAR Systems: Radar for Remote Sensing Research , 1995 .

[2]  Laurent Ferro-Famil,et al.  Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier , 2001, IEEE Trans. Geosci. Remote. Sens..

[3]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[4]  Eric Pottier,et al.  Application of the «H / A / α» Polarimetric Decomposition Theorem for Unsupervised Classification of Fully Polarimetric SAR Data Based on the Wishart Distribution , 2000 .

[5]  Ernst Lüneburg,et al.  Aspects of Radar Polarimetry , 2002 .

[6]  S. Cloude Group theory and polarisation algebra , 1986 .

[7]  E. Luneburg,et al.  Polarimetry in remote sensing: basic and applied concepts , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[8]  E. M. Kennaugh,et al.  Effects of Type of Polarization On Echo Characteristics , 1952 .

[9]  Shane R. Cloude,et al.  Lie Groups in Electromagnetic Wave Propagation and Scattering , 1992 .

[10]  G. Arfken Mathematical Methods for Physicists , 1967 .

[11]  R. Schmieder Stokes-Algebra Formalism , 1969 .

[12]  Ridha Touzi,et al.  Target scattering decomposition of one-look and multi-look SAR data using a new coherent scattering model: the TSVM , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[13]  Irena Hajnsek,et al.  Inversion of surface parameters from polarimetric SAR , 2003, IEEE Trans. Geosci. Remote. Sens..

[14]  Juan M. Lopez-Sanchez,et al.  Wide-band polarimetric radar inversion studies for vegetation layers , 1999, IEEE Trans. Geosci. Remote. Sens..

[15]  Carlos López-Martínez,et al.  Statistical assessment of eigenvector-based target decomposition theorems in radar polarimetry , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[17]  R. Touzi A unified model for decomposition of coherent and partially coherent target scattering using polarimetric SARs , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[18]  R. Keith Raney,et al.  On the use of permanent symmetric scatterers for ship characterization , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[19]  M. El-Arini,et al.  Polarization dependence in electromagnetic inverse problems , 1981 .

[20]  T.I. Lukowski,et al.  Consideration of antenna gain and phase patterns for calibration of polarimetric SAR data , 1993, IEEE Trans. Geosci. Remote. Sens..

[21]  Ridha Touzi,et al.  Characterization of target symmetric scattering using polarimetric SARs , 2002, IEEE Trans. Geosci. Remote. Sens..

[22]  J. R. Huynen,et al.  Measurement of the target scattering matrix , 1965 .

[23]  Alexander B. Kostinski,et al.  On foundations of radar polarimetry , 1986 .

[24]  J. Huynen Phenomenological theory of radar targets , 1970 .

[25]  Yoshio Yamaguchi,et al.  On the basic principles of radar polarimetry: the target characteristic polarization state theory of Kennaugh, Huynen's polarization fork concept, and its extension to the partially polarized case , 1991 .

[26]  J. S. Lee,et al.  Estimation of the terrain surface azimuthal/range slopes using polarimetric decomposition of POLSAR data , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[27]  Thomas L. Ainsworth,et al.  On the estimation of radar polarization orientation shifts induced by terrain slopes , 2002, IEEE Trans. Geosci. Remote. Sens..

[28]  Teiji Takagi,et al.  On an Algebraic Problem Reluted to an Analytic Theorem of Carathéodory and Fejér and on an Allied Theorem of Landau , 1924 .

[29]  J. S. Lee,et al.  A review of polarimetry in the context of synthetic aperture radar: concepts and information extraction , 2004 .

[30]  Shane R. Cloude Wideband radar inversion studies using the entropy-alpha decomposition , 1997, Optics & Photonics.

[31]  R. K. Hawkins,et al.  Ship detection and characterization using polarimetric SAR , 2004 .

[32]  William L. Cameron,et al.  Simulated polarimetric signatures of primitive geometrical shapes , 1996, IEEE Trans. Geosci. Remote. Sens..

[33]  E. Krogager New decomposition of the radar target scattering matrix , 1990 .

[34]  Jakob J. Vanzyl,et al.  Application of Cloude's target decomposition theorem to polarimetric imaging radar data , 1993 .

[35]  R. Azzam,et al.  Ellipsometry and polarized light , 1977 .

[36]  R. Touzi Speckle effect on polarimetric target scattering decomposition of SAR imagery , 2007 .

[37]  Thomas L. Ainsworth,et al.  Polarimetric SAR data compensation for terrain azimuth slope variation , 2000, IEEE Trans. Geosci. Remote. Sens..

[38]  S. Cloude Uniqueness of Target Decomposition Theorems in Radar Polarimetry , 1992 .

[39]  Eric Pottier,et al.  Application of the H/A/alpha polarimetric decomposition theorem for land classification , 1997, Optics & Photonics.

[40]  Thomas L. Ainsworth,et al.  Unsupervised classification using polarimetric decomposition and the complex Wishart classifier , 1999, IEEE Trans. Geosci. Remote. Sens..

[41]  Ridha Touzi,et al.  Forest type discrimination using calibrated C-band polarimetric SAR data , 2004 .

[42]  Paris W. Vachon,et al.  Coherence estimation for SAR imagery , 1999, IEEE Trans. Geosci. Remote. Sens..