A Bayesian Method for Synthesizing Evidence: The Confidence Profile Method

This article describes a collection of meta-analysis techniques based on Bayesian statistics for interpreting, adjusting, and combining evidence to estimate parameters and outcomes important to the assessment of health technologies. The result of an analysis by the Confidence Profile Method is a joint posterior probability distribution for the parameters of interest, from which marginal distributions for any particular parameter can be calculated. The method can be used to analyze problems involving a variety of types of outcomes, a variety of measures of effect, and a variety of experimental designs. This article presents the elements necessary for analysis, including prior distributions, likelihood functions, and specific models for experimental designs that include adjustment for biases.