Wavelet-Based Multiresolution Surface Approximation from Height Fields

A height field is a set of height distance values sampled at a finite set of sample points in a two-dimensional parameter domain. A height field usually contains a lot of redundant information, much of which can be removed without a substantial degradation of its quality. A common approach to reducing the size of a height field representation is to use a piecewise polygonal surface approximation. This consists of a mesh of polygons that approximates the surfaces of the original data at a desired level of accuracy. Polygonal surface approximation of height fields has numerous applications in the fields of computer graphics and computer vision. Triangular mesh approximations are a popular means of representing three-dimensional surfaces, and multiresolution analysis (MRA) is often used to obtain compact representations of dense input data, as well as to allow surface approximations at varying spatial resolution. Multiresolution approaches, particularly those moving from coarse to fine resolutions, can often improve the computational efficiency of mesh generation as well as can provide easy control of level of details for approximations. This dissertation concerns the use of wavelet-based MRA methods to produce a triangular-mesh surface approximation from a single height field dataset. The goal of this study is to obtain a fast surface approximation for a set of height data, using a small number of approximating elements to satisfy a given error criterion. Typically, surface approximation techniques attempt to balance error of fit, number of approximating elements, and speed of computation. A novel aspect of this approach is the direct evaluation of wavelet coefficients to assess surface shape characteristics within each triangular element at a given scale. Our approach hierarchically subdivides and refines triangles as the resolution level increases.

[1]  Georges-Pierre Bonneau,et al.  Multiresolution Analysis on Irregular Surface Meshes , 1998, IEEE Trans. Vis. Comput. Graph..

[2]  B. Guo,et al.  A Multiscale Model for Structure-Based Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[3]  J. P. Jones,et al.  Calibration and control for range imaging in mobile robot navigation , 1994 .

[4]  I. Johnstone,et al.  Wavelet Threshold Estimators for Data with Correlated Noise , 1997 .

[5]  A. Lynn Abbott,et al.  Active Stereo: Integrating Disparity, Vergence, Focus, Aperture and Calibration for Surface Estimation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  E. J. Stollnitz,et al.  Wavelets for Computer Graphics : A Primer , 1994 .

[7]  O. Rioul,et al.  Wavelets and signal processing , 1991, IEEE Signal Processing Magazine.

[8]  Sang Uk Lee,et al.  Edge-based approach to mesh simplification , 1999, Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062).

[9]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[10]  Clark F. Olson Mobile robot self-localization by iconic matching of range maps , 1997, 1997 8th International Conference on Advanced Robotics. Proceedings. ICAR'97.

[11]  William E. Lorensen,et al.  Decimation of triangle meshes , 1992, SIGGRAPH.

[12]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[13]  Rémy Prost,et al.  A multiresolution wavelet scheme for irregularly subdivided 3D triangular mesh , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[14]  Paolo Cignoni,et al.  Multiresolution decimation based on global error , 1996, The Visual Computer.

[15]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[16]  Leila De Floriani,et al.  A hierarchical structure for surface approximation , 1984, Comput. Graph..

[17]  Markus H. Gross,et al.  Multiresolution triangular B-spline surfaces , 1998, Proceedings. Computer Graphics International (Cat. No.98EX149).

[18]  Junqiang Sun,et al.  Tms320c6000 cpu and instruction set reference guide , 2000 .

[19]  E. Bacry,et al.  Solving the Inverse Fractal Problem from Wavelet Analysis , 1994 .

[20]  Geoff Wyvill,et al.  Towards an understanding of surfaces through polygonization , 1998, Proceedings. Computer Graphics International (Cat. No.98EX149).

[21]  Wim Sweldens,et al.  The lifting scheme: a construction of second generation wavelets , 1998 .

[22]  Robert M. Haralick,et al.  An Integrated Linear Technique for Pose Estimation from Different Geometric Features , 1999, Int. J. Pattern Recognit. Artif. Intell..

[23]  Adam Finkelstein,et al.  Wavelets in Computer Graphics Schedule Morning Session: Introductory Material Building Your Own Wavelets at Home Afternoon Session: Applications Chapter 3: Multiresolution Curves Chapter 4: Multiresolution Painting and Compositing Chapter 7: Wavelet Radiosity: Wavelet Methods for Integral Equations , 1996 .

[24]  Bernd Hamann,et al.  The asymptotic decider: resolving the ambiguity in marching cubes , 1991, Proceeding Visualization '91.

[25]  Larry S. Davis,et al.  Pose Determination of a Three-Dimensional Object Using Triangle Pairs , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Joseph S. B. Mitchell,et al.  Automatic generation of triangular irregular networks using greedy cuts , 1995, Proceedings Visualization '95.

[27]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[28]  Joachim M. Buhmann,et al.  Non-parametric similarity measures for unsupervised texture segmentation and image retrieval , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  Hans-Peter Seidel,et al.  A General Framework for Mesh Decimation , 1998, Graphics Interface.

[30]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[31]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[32]  A. Lynn Abbott,et al.  Wane detection on rough lumber using surface approximation , 2000 .

[33]  Ron Goldman,et al.  Geometric Algorithms for Detecting and Calculating All Conic Sections in the Intersection of Any 2 Natural Quadric Surfaces , 1995, CVGIP Graph. Model. Image Process..

[34]  Denis Laurendeau,et al.  Multiresolution Surface Modeling Based on Hierarchical Triangulation , 1996, Comput. Vis. Image Underst..

[35]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..

[36]  Jerome M. Shapiro,et al.  Embedded image coding using zerotrees of wavelet coefficients , 1993, IEEE Trans. Signal Process..

[37]  Issac J. Trotts,et al.  Smooth hierarchical surface triangulations , 1997 .

[38]  Renato Pajarola Large scale terrain visualization using the restricted quadtree triangulation , 1998 .

[39]  Marc Levoy,et al.  Zippered polygon meshes from range images , 1994, SIGGRAPH.

[40]  Daniel P. Huttenlocher,et al.  A multi-resolution technique for comparing images using the Hausdorff distance , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[41]  Kari Pulli,et al.  Multiview registration for large data sets , 1999, Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062).

[42]  Georges-Pierre Bonneau,et al.  Level of detail visualization of scalar data sets on irregular surface meshes , 1998 .

[43]  Bernd Hamann,et al.  A data reduction scheme for triangulated surfaces , 1994, Comput. Aided Geom. Des..

[44]  Rémi Ronfard,et al.  Full‐range approximation of triangulated polyhedra. , 1996, Comput. Graph. Forum.

[45]  Francis J. M. Schmitt,et al.  Progressive multilevel meshes from octree particles , 1999, Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062).

[46]  M. Garland,et al.  Fast Polygonal Approximation of Terrains and Height Fields , 1998 .

[47]  Y. D. Wang,et al.  Three-dimensional object recognition using vector wavelets , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[48]  Kousuke Kumamaru,et al.  3-D surface recovery from range images by using multiresolution wavelet transform , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[49]  Michael Unser,et al.  A family of polynomial spline wavelet transforms , 1993, Signal Process..

[50]  Wim Sweldens,et al.  Building your own wavelets at home , 2000 .

[51]  Sang Uk Lee,et al.  Constructing NURBS surface model from scattered and unorganized range data , 1999, Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062).

[52]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  James Arvo,et al.  Creating generative models from range images , 1999, SIGGRAPH.

[54]  Amitabh Varshney,et al.  Dynamic view-dependent simplification for polygonal models , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[55]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Wen-Thong Chang,et al.  Fast Surface Interpolation using Multiresolution Wavelet Transform , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Miguel Ángel García,et al.  Efficient approximation of range images through data-dependent adaptive triangulations , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[58]  G. Nielson,et al.  Haar wavelets over triangular domains with applications to multiresolution models for flow over a sphere , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[59]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[60]  O. Faugeras Three-dimensional computer vision: a geometric viewpoint , 1993 .

[61]  G. Thomas Calculus and Analytic Geometry , 1953 .

[62]  Gregory M. Nielson,et al.  BLaC-wavelets: a multiresolution analysis with non-nested spaces , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[63]  Hugues Hoppe Smooth view-dependent level-of-detail control and its application to terrain rendering , 1998 .

[64]  G. Schiavone,et al.  Multiresolution representation of non-uniformly sampled terrain databases using wavelets , 1996, Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers.

[65]  Markus Gross,et al.  Multiresolution compression and reconstruction , 1997 .

[66]  Baba C. Vemuri,et al.  On Three-Dimensional Surface Reconstruction Methods , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[67]  P. Chouraqui,et al.  Physically based adaptive triangulation of freeform surfaces , 1996, Proceedings of CG International '96.

[68]  David Salesin,et al.  Multiresolution painting and compositing , 1994, SIGGRAPH.

[69]  David Eppstein,et al.  Triangulating polygons without large angles , 1992, SCG '92.

[70]  Linda G. Shapiro,et al.  Acquisition and visualization of colored 3D objects , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[71]  B. O'neill Elementary Differential Geometry , 1966 .

[72]  D. Stork Generic object recognition using form & function , 1996 .

[73]  William Rucklidge,et al.  Efficient Visual Recognition Using the Hausdorff Distance , 1996, Lecture Notes in Computer Science.

[74]  David Salesin,et al.  Wavelets for computer graphics: a primer.1 , 1995, IEEE Computer Graphics and Applications.

[75]  Bernard Journet,et al.  A low-cost laser range finder based on an FMCW-like method , 2000, IEEE Trans. Instrum. Meas..

[76]  Cheng Hongwei,et al.  Application of wavelet packets theory in maneuver target tracking , 1996, Proceedings of the IEEE 1996 National Aerospace and Electronics Conference NAECON 1996.

[77]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[78]  Franco P. Preparata,et al.  Computational Geometry , 1985, Texts and Monographs in Computer Science.

[79]  J. Thorpe Elementary Topics in Differential Geometry , 1979 .

[80]  David Salesin,et al.  Multiresolution curves , 1994, SIGGRAPH.

[81]  Gregory Dudek,et al.  Learning and evaluating visual features for pose estimation , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[82]  Wageeh Boles,et al.  Recognition of 2D object contours using the wavelet transform zero-crossing representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[83]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[84]  Theodosios Pavlidis,et al.  Hierarchical triangulation using cartographic coherence , 1992, CVGIP Graph. Model. Image Process..

[85]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[86]  Markus H. Gross,et al.  Efficient Triangular Surface Approximations Using Wavelets and Quadtree Data Structures , 1996, IEEE Trans. Vis. Comput. Graph..

[87]  Jin-Long Chen,et al.  Determining Pose of 3D Objects With Curved Surfaces , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[88]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[89]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[90]  Karl-Heinz Häfele,et al.  Curvature estimation for segmentation of triangulated surfaces , 1999, Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062).

[91]  Dinesh Manocha,et al.  Simplification envelopes , 1996, SIGGRAPH.

[92]  Jong Beom Ra,et al.  Fast triangular mesh approximation of surface data using wavelet coefficients , 1999, The Visual Computer.

[93]  S. Mallat A wavelet tour of signal processing , 1998 .

[94]  Kenneth I. Joy,et al.  Near-optimal adaptive polygonization , 1999, 1999 Proceedings Computer Graphics International.

[95]  Luis Pastor,et al.  Surface approximation of 3D objects from irregularly sampled clouds of 3D points using spherical wavelets , 1999, Proceedings 10th International Conference on Image Analysis and Processing.

[96]  P. M. Prenter Splines and variational methods , 1975 .

[97]  Chandrajit L. Bajaj,et al.  Error-bounded reduction of triangle meshes with multivariate data , 1996, Electronic Imaging.

[98]  Konrad Polthier,et al.  Interpolation of triangle hierarchies , 1998 .

[99]  A. Lynn Abbott,et al.  Using an embedded-processor camera for surface scanning of unplaned hardwood lumber , 2000 .

[100]  David Salesin,et al.  Wavelets for computer graphics: theory and applications , 1996 .

[101]  A. Gray,et al.  Modern Differential Geometry of Curves and Surfaces with Mathematica, Third Edition (Studies in Advanced Mathematics) , 2006 .

[102]  Peter Schröder,et al.  Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.

[103]  Richard Szeliski,et al.  Fast Surface Interpolation Using Hierarchical Basis Functions , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[104]  Hugues Hoppe,et al.  View-dependent refinement of progressive meshes , 1997, SIGGRAPH.

[105]  Michael F. Cohen,et al.  Hierarchical and variational geometric modeling with wavelets , 1995, I3D '95.

[106]  Lance Williams,et al.  Pyramidal parametrics , 1983, SIGGRAPH.

[107]  Adrian S. Lewis,et al.  Image compression using the 2-D wavelet transform , 1992, IEEE Trans. Image Process..

[108]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[109]  Carlo Tomasi,et al.  Texture metrics , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[110]  Paul S. Heckbert,et al.  Survey of Polygonal Surface Simplification Algorithms , 1997 .

[111]  Terry Caelli,et al.  Computation of Surface Geometry and Segmentation Using Covariance Techniques , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[112]  I. Daubechies,et al.  Factoring wavelet transforms into lifting steps , 1998 .

[113]  Anselmo Lastra,et al.  Simplification of Global‐Illumination Meshes , 1996, Comput. Graph. Forum.

[114]  Ping Liang,et al.  Representation and recognition of surface shapes in range images: A differential geometry approach , 1990, Comput. Vis. Graph. Image Process..

[115]  Takeo Kanade,et al.  Image-consistent surface triangulation , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[116]  C. Stein Estimation of the Mean of a Multivariate Normal Distribution , 1981 .

[117]  Reinhard Klein,et al.  Mesh reduction with error control , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[118]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[119]  Dmitry Chetverikov,et al.  Matching for Shape Defect Detection , 1999, CAIP.

[120]  J. Gross,et al.  Graph Theory and Its Applications , 1998 .

[121]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[122]  Tosiyasu L. Kunii,et al.  Curve and surface design using multiresolution constraints , 1997, Proceedings Computer Graphics International.

[123]  Michael Garland,et al.  Multiresolution Modeling for Fast Rendering , 1999 .

[124]  Ramesh C. Jain,et al.  Invariant surface characteristics for 3D object recognition in range images , 1985, Comput. Vis. Graph. Image Process..

[125]  Michael Garland,et al.  Simplifying surfaces with color and texture using quadric error metrics , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[126]  Robert M. Haralick,et al.  Feature normalization and likelihood-based similarity measures for image retrieval , 2001, Pattern Recognit. Lett..

[127]  J. S. Lee,et al.  Estimation of the terrain surface azimuthal/range slopes using polarimetric decomposition of POLSAR data , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[128]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[129]  A. Lynn Abbott,et al.  Active surface reconstruction by integrating focus, vergence, stereo, and camera calibration , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[130]  Gongzhu Hu,et al.  3-D Surface Solution Using Structured Light and Constraint Propagation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[131]  Martial Hebert,et al.  Efficient multiple model recognition in cluttered 3-D scenes , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[132]  S. Rippa,et al.  Data Dependent Triangulations for Piecewise Linear Interpolation , 1990 .

[133]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[134]  Jarek Rossignac,et al.  Multi-resolution 3D approximations for rendering complex scenes , 1993, Modeling in Computer Graphics.

[135]  S. G. Mallat Multiresolution Approach to Wavelets in Computer Vision , 1990 .

[136]  Michael J. Swain,et al.  Gesture recognition using the Perseus architecture , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[137]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[138]  Ronald A. DeVore,et al.  Image compression through wavelet transform coding , 1992, IEEE Trans. Inf. Theory.

[139]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[140]  Peter Schröder,et al.  Multiresolution signal processing for meshes , 1999, SIGGRAPH.

[141]  Miguel Ángel García Fast approximation of range images by triangular meshes generated through adaptive randomized sampling , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[142]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[143]  Leila De Floriani,et al.  Delaunay-based representation of surfaces defined over arbitrarily shaped domains , 1985, Comput. Vis. Graph. Image Process..