Design and In-orbit Demonstration of REGULUS, an Iodine electric propulsion system

[1]  A. Capobianco,et al.  Numerical Suite for Gaseous Plasma Antennas Simulation , 2021, IEEE Transactions on Plasma Science.

[2]  Cristian Dobranszki,et al.  Characterisation of a thermionic plasma source apparatus for high-density gaseous plasma antenna applications , 2020, Plasma Sources Science and Technology.

[3]  D. Pavarin,et al.  Parametric Study of a Cathode-Less Radio Frequency Thruster , 2020, IEEE Transactions on Plasma Science.

[4]  D. Pavarin,et al.  Numerical Model of a Helicon Plasma Thruster , 2020, IEEE Transactions on Plasma Science.

[5]  Paolo Rocca,et al.  Modeling and design of a plasma-based transmit-array with beam scanning capabilities , 2020, Results in Physics.

[6]  Daniele Pavarin,et al.  3D-VIRTUS: Equilibrium condition solver of radio-frequency magnetized plasma discharges for space applications , 2020, Comput. Phys. Commun..

[7]  D. Pavarin,et al.  Study on the influence of the magnetic field geometry on the power deposition in a helicon plasma source , 2019, Journal of Plasma Physics.

[8]  Kazunori Takahashi Helicon-type radiofrequency plasma thrusters and magnetic plasma nozzles , 2019, Reviews of Modern Plasma Physics.

[9]  D. Pavarin,et al.  Enhanced biDimensional pIc: an electrostatic/magnetostatic particle-in-cell code for plasma based systems , 2019, Journal of Plasma Physics.

[10]  Daniele Pavarin,et al.  REGULUS: A propulsion platform to boost small satellite missions , 2019, Acta Astronautica.

[11]  M. Merino,et al.  On electron boundary conditions in PIC plasma thruster plume simulations , 2019, Plasma Sources Science and Technology.

[12]  Alessandra Brandão,et al.  Towards the Thousandth CubeSat: A Statistical Overview , 2019, International Journal of Aerospace Engineering.

[13]  Antonio G. V. de Brum,et al.  Attitude control system proposed for SERPENS-2 space mission , 2018 .

[14]  F. Cichocki,et al.  Hybrid 3D model for the interaction of plasma thruster plumes with nearby objects , 2017 .

[15]  Joao F. Seixal,et al.  The Iodine Satellite (iSAT) Propellant Feed System - Design and Development , 2017 .

[16]  M. Pessana,et al.  Development of a counterbalanced pendulum thrust stand for electric propulsion , 2017, 2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace).

[17]  A. Aanesland,et al.  Global model of an iodine gridded plasma thruster , 2016 .

[18]  Gregory A. Jerman,et al.  Propulsion System Development for the Iodine Satellite (iSAT) Demonstration Mission , 2015 .

[19]  J. Roussel,et al.  SPIS 5: New Modeling Capabilities and Methods for Scientific Missions , 2015, IEEE Transactions on Plasma Science.

[20]  Denis Packan,et al.  Optimization of a coaxial electron cyclotron resonance plasma thruster with an analytical model , 2015 .

[21]  E. Ahedo,et al.  Electron cooling and finite potential drop in a magnetized plasma expansion , 2015 .

[22]  Francis F. Chen,et al.  Helicon discharges and sources: a review , 2015 .

[23]  Craig Underwood,et al.  A Baptism of Fire: The STRaND-1 Nanosatellite , 2013 .

[24]  Daniele Pavarin,et al.  Low Power RF Plasma Thruster Experimental Characterization , 2012 .

[25]  S. Kenyon,et al.  STRaND-1: The world's first smartphone nanosatellite , 2011, 2011 2nd International Conference on Space Technology.

[26]  Eberhard Gill,et al.  Formation flying within a constellation of nano-satellites: The QB50 mission , 2010 .

[27]  M. Merino,et al.  Two-dimensional supersonic plasma acceleration in a magnetic nozzle , 2010 .

[28]  Juergen Mueller,et al.  Survey of Propulsion Technologies Applicable to Cubesats , 2010 .

[29]  F. Leens,et al.  An introduction to I2C and SPI protocols , 2009, IEEE Instrumentation & Measurement Magazine.

[30]  Fabio Santoni,et al.  The unisat program: Lessons learned and achieved results , 2006 .

[31]  Antonio-Daniele Capobianco,et al.  Feasibility study of a novel class of plasma antennas for SatCom navigation systems , 2021 .

[32]  Sara Vega Martínez,et al.  An Off-Axis Iodine Propulsion System for the Robusta-3A Mission , 2020 .

[33]  REGULUS: Know-How Acquired on Iodine Propellant , 2019 .

[34]  P. Martegani Debris Collision Alert System , 2019 .

[35]  A. Ceccarini,et al.  Progress on the Development of an Iodine-fed Hall Effect Thruster , 2017 .

[36]  Joao F. Seixal,et al.  The iodine Satellite ( iSat ) Propellant Feed , 2017 .

[37]  Alessandro Golkar,et al.  CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions , 2017 .

[38]  George Teel,et al.  Thruster Subsystem for the United States Naval Academy's (USNA) Ballistically Reinforced Communication Satellite (BRICSat-P) , 2016 .

[39]  Michael Tsay,et al.  LunarCube: A Deep Space 6U CubeSat with Mission Enabling Ion Propulsion Technology , 2015 .

[40]  E. Buchen Small Satellite Market Observations , 2015 .

[41]  Doug Sinclair,et al.  Radiation Effects and COTS Parts in SmallSats , 2013 .

[42]  Robert Twiggs,et al.  An Advanced Standard for CubeSats , 2011 .

[43]  James Joseph Szabo,et al.  Fully kinetic numerical modeling of a plasma thruster , 2001 .