Dual deletion of guanylyl cyclase-A and p38 mitogen-activated protein kinase in podocytes with aldosterone administration causes glomerular intra-capillary thrombi.

[1]  F. Milliat,et al.  Glomerular endothelial cell senescence drives age‐related kidney disease through PAI‐1 , 2021, EMBO molecular medicine.

[2]  K. Kalantar-Zadeh,et al.  Chronic kidney disease , 2021, The Lancet.

[3]  B. Bruneau,et al.  Cardiac natriuretic peptides , 2020, Nature Reviews Cardiology.

[4]  K. Nakao,et al.  Natriuretic peptide receptor guanylyl cyclase-A pathway counteracts glomerular injury evoked by aldosterone through p38 mitogen-activated protein kinase inhibition , 2017, Scientific Reports.

[5]  A. Fogo Talking back: the podocytes and endothelial cells duke it out. , 2016, Kidney international.

[6]  A. Nebreda,et al.  The Stress Kinase p38α as a Target for Cancer Therapy. , 2015, Cancer research.

[7]  K. Nakao,et al.  MicroRNA-26a inhibits TGF-β-induced extracellular matrix protein expression in podocytes by targeting CTGF and is downregulated in diabetic nephropathy , 2015, Diabetologia.

[8]  I. Pastan,et al.  Podocyte injury-driven intracapillary plasminogen activator inhibitor type 1 accelerates podocyte loss via uPAR-mediated β1-integrin endocytosis. , 2015, American journal of physiology. Renal physiology.

[9]  Zhihong Liu,et al.  Glomerular endothelial cell injury and cross talk in diabetic kidney disease. , 2015, American journal of physiology. Renal physiology.

[10]  Hongming Pan,et al.  p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. , 2014, Cancer letters.

[11]  N. Brown Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis , 2013, Nature Reviews Nephrology.

[12]  P. Heeringa,et al.  The Mitogen-Activated Protein Kinase p38α Regulates Tubular Damage in Murine Anti-Glomerular Basement Membrane Nephritis , 2013, PloS one.

[13]  K. Nakao,et al.  Natriuretic peptide receptor guanylyl cyclase-A protects podocytes from aldosterone-induced glomerular injury. , 2012, Journal of the American Society of Nephrology : JASN.

[14]  C. Alpers,et al.  VEGF inhibition and renal thrombotic microangiopathy. , 2008, The New England journal of medicine.

[15]  P. Singhal,et al.  Aldosterone promotes proximal tubular cell apoptosis: role of oxidative stress. , 2007, American journal of physiology. Renal physiology.

[16]  M. Barbacid,et al.  p38α MAP kinase is essential in lung stem and progenitor cell proliferation and differentiation , 2007, Nature Genetics.

[17]  H. Kawachi,et al.  Podocyte as the Target for Aldosterone: Roles of Oxidative Stress and Sgk1 , 2007, Hypertension.

[18]  C. Ferrario,et al.  Role of the renin-angiotensin-aldosterone system and proinflammatory mediators in cardiovascular disease. , 2006, The American journal of cardiology.

[19]  S. Adler,et al.  Glucose and diabetes: effects on podocyte and glomerular p38MAPK, heat shock protein 25, and actin cytoskeleton. , 2006, Kidney international.

[20]  K. Nakao,et al.  Role of p38 mitogen-activated protein kinase activation in podocyte injury and proteinuria in experimental nephrotic syndrome. , 2005, Journal of the American Society of Nephrology : JASN.

[21]  I. Pastan,et al.  Permanent Genetic Tagging of Podocytes: Fate of Injured Podocytes in a Mouse Model of Glomerular Sclerosis Materials and Methods Animal Experiments , 2022 .

[22]  Takahiko Kobayashi,et al.  Aldosterone stimulates proliferation of mesangial cells by activating mitogen-activated protein kinase 1/2, cyclin D1, and cyclin A. , 2005, Journal of the American Society of Nephrology : JASN.

[23]  Roger E Bumgarner,et al.  Multifunctionality of PAI-1 in fibrogenesis: evidence from obstructive nephropathy in PAI-1-overexpressing mice. , 2005, Kidney international.

[24]  T. Ludwig,et al.  Human Endothelium: Target for Aldosterone , 2004, Hypertension.

[25]  T. Nakagawa,et al.  Inhibition of p38 mitogen-activated protein kinase augments progression of remnant kidney model by activating the ERK pathway. , 2004, The American journal of pathology.

[26]  T. Takano,et al.  p38 mitogen-activated protein kinase protects glomerular epithelial cells from complement-mediated cell injury. , 2003, American journal of physiology. Renal physiology.

[27]  J. Boehm,et al.  p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases , 2003, Nature Reviews Drug Discovery.

[28]  G. Hutchins,et al.  Thrombotic thrombocytopenic purpura and hemolytic uremic syndrome are distinct pathologic entities. A review of 56 autopsy cases. , 2003, Archives of pathology & laboratory medicine.

[29]  P. Carmeliet,et al.  Plasminogen activator inhibitor-1 is a significant determinant of renal injury in experimental crescentic glomerulonephritis. , 2003, Journal of the American Society of Nephrology : JASN.

[30]  J. Haigh,et al.  Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. , 2003, The Journal of clinical investigation.

[31]  M. O'hare,et al.  A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. , 2002, Journal of the American Society of Nephrology : JASN.

[32]  K. Nakao,et al.  Molecular biology and biochemistry of the natriuretic peptide system. II: Natriuretic peptide receptors. , 1992, Journal of hypertension.

[33]  R. Witzgall,et al.  Natriuretic Peptide Receptor Guanylyl Cyclase-A in Podocytes is Renoprotective but Dispensable for Physiologic Renal Function. , 2017, Journal of the American Society of Nephrology : JASN.

[34]  R. Atkins,et al.  Blockade of p 38 MAPK Ameliorates Acute Inflammatory Renal Injury in Rat Anti-GBM Glomerulonephritis , 2003 .