Porous substrates for label-free molecular level detection of nonresonant organic molecules.

We report on the design of practical surface enhanced Raman scattering (SERS) substrate based upon 3D alumina membranes with cylindrical nanopores chemically modified with polyelectrolyte coating and loaded with gold nanoparticle clusters. These substrates allow for a molecular-level, label-free detection of common plastic explosive materials (TNT, DNT) down to 5-10 zeptograms or 15-30 molecules and a common liquid explosive (HMTD) down to 1 picogram. Such a sensitive detection of organic molecules by utilizing efficient SERS substrates opens the path for affordable and label-free detection of trace amount of practically important chemical compounds.

[1]  Hyunhyub Ko,et al.  Nanoparticle-decorated nanocanals for surface-enhanced Raman scattering. , 2008, Small.

[2]  Hyunhyub Ko,et al.  Nanostructured surfaces and assemblies as SERS media. , 2008, Small.

[3]  Lu Ouyang,et al.  Creation of functional membranes using polyelectrolyte multilayers and polymer brushes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[4]  Hyunhyub Ko,et al.  Bimetallic Nanocobs: Decorating Silver Nanowires with Gold Nanoparticles , 2008 .

[5]  R. Cooks,et al.  In situ trace detection of peroxide explosives by desorption electrospray ionization and desorption atmospheric pressure chemical ionization. , 2008, Analytical chemistry.

[6]  Colette McDonagh,et al.  Optical chemical sensors. , 2008, Chemical reviews.

[7]  J. Homola Surface plasmon resonance sensors for detection of chemical and biological species. , 2008, Chemical reviews.

[8]  Masayuki Nogami,et al.  Self-assembled silver nanochains for surface-enhanced Raman scattering. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[9]  J. Baumberg,et al.  Surface‐Enhanced Raman Scattering Using Microstructured Optical Fiber Substrates , 2007 .

[10]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[11]  Samuel P. Hernández-Rivera,et al.  Surface enhanced Raman scattering of TNT and DNT on colloidal nanoparticles of Ag/TiO2 , 2007, SPIE Defense + Commercial Sensing.

[12]  Donald J. Sirbuly,et al.  Multifunctional Nanowire Evanescent Wave Optical Sensors , 2007 .

[13]  S. Ahn,et al.  Controlled Synthesis of Icosahedral Gold Nanoparticles and Their Surface-Enhanced Raman Scattering Property , 2007 .

[14]  C. Gu,et al.  Hollow core photonic crystal fiber surface-enhanced Raman probe , 2006 .

[15]  V. Markin,et al.  Adsorption at liquid interfaces: The generalized Frumkin isotherm and interfacial structure , 2006 .

[16]  A. Brolo,et al.  Nanoparticle-containing structures as a substrate for surface-enhanced Raman scattering. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[17]  Chad A. Mirkin,et al.  Designing, fabricating, and imaging Raman hot spots , 2006, Proceedings of the National Academy of Sciences.

[18]  Masayuki Nogami,et al.  One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties , 2006 .

[19]  K. Kneipp,et al.  Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. , 2006, Accounts of chemical research.

[20]  Vladimir V. Tsukruk,et al.  Freestanding Nanostructures via Layer‐by‐Layer Assembly , 2006 .

[21]  Ian M. White,et al.  Increasing the Enhancement of SERS with Dielectric Microsphere Resonators , 2006 .

[22]  R Graham Cooks,et al.  Rapid trace detection of triacetone triperoxide (TATP) by complexation reactions during desorption electrospray ionization. , 2006, Chemical communications.

[23]  T. L. Williamson,et al.  Porous GaN as a template to produce surface-enhanced Raman scattering-active surfaces. , 2005, The journal of physical chemistry. B.

[24]  Vladimir V Tsukruk,et al.  Surface enhanced Raman scattering monitoring of chain alignment in freely suspended nanomembranes. , 2005, Physical review letters.

[25]  Samuel P. Hernandez-Rivera,et al.  Effect of environmental conditions on the spectroscopic signature of DNT in sand , 2005, SPIE Defense + Commercial Sensing.

[26]  Samuel P. Hernandez-Rivera,et al.  Functionalization of nitroexplosives for surface-enhanced resonance Raman spectroscopy of silver colloids , 2005, SPIE Defense + Commercial Sensing.

[27]  R. V. Van Duyne,et al.  Wavelength-scanned surface-enhanced Raman excitation spectroscopy. , 2005, The journal of physical chemistry. B.

[28]  N J Halas,et al.  Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Vladimir V Tsukruk,et al.  Freely suspended nanocomposite membranes as highly sensitive sensors , 2004, Nature materials.

[30]  Samuel P. Hernandez-Rivera,et al.  Theoretical studies of the molecular structures of dinitrotoluenes and their interactions with siloxane site surface of clays , 2004, SPIE Defense + Commercial Sensing.

[31]  D. Moore Instrumentation for trace detection of high explosives , 2004 .

[32]  David R. Smith,et al.  Surface-Enhanced Raman Scattering from Silver-Plated Porous Silicon , 2004 .

[33]  W. Knoll,et al.  Highly sensitive detection of processes occurring inside nanoporous anodic alumina templates : a waveguide optical study , 2004 .

[34]  Steven D. Christesen,et al.  Surface-enhanced Raman spectroscopy for homeland defense , 2004, SPIE Optics East.

[35]  Luke P. Lee,et al.  Surface‐Enhanced Raman Scattering of Small Molecules from Silver‐Coated Silicon Nanopores , 2003 .

[36]  P. A. Mosier-Boss,et al.  Detection of Anions by Normal Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy of Cationic-Coated Substrates , 2003, Applied spectroscopy.

[37]  Younan Xia,et al.  Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy , 2003 .

[38]  Lewis J. Rothberg,et al.  The structural basis for giant enhancement enabling single-molecule Raman scattering , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[40]  Mostafa A. El-Sayed,et al.  Surface-Enhanced Raman Scattering Studies on Aggregated Gold Nanorods† , 2003 .

[41]  Christy L. Haynes,et al.  Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy † , 2003 .

[42]  Michal Lahav,et al.  Nanoparticle nanotubes. , 2003, Angewandte Chemie.

[43]  Limin Tong,et al.  Subwavelength-diameter silica wires for low-loss optical wave guiding , 2003, Nature.

[44]  Vladimir P. Safonov,et al.  Fractals in Microcavities: Giant Coupled, Multiplicative Enhancement of Optical Responses , 2002 .

[45]  J. M. Harris,et al.  Characterization of silane-modified immobilized gold colloids as a substrate for surface-enhanced Raman spectroscopy. , 2001, Analytical chemistry.

[46]  S. Nie,et al.  Nanostructured thin-film materials with surface-enhanced optical properties , 2001 .

[47]  Mostafa A. El-Sayed,et al.  Self-Assembly of Gold Nanorods , 2000 .

[48]  Kevin M. Spencer,et al.  Advances in land mine detection using surface-enhanced Raman spectroscopy , 1999, Defense, Security, and Sensing.

[49]  R. V. Duyne,et al.  Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays , 1999 .

[50]  J. Laureyns,et al.  Polyamines adsorbed onto silica gel: A Raman microprobe analysis , 1997 .

[51]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[52]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[53]  Vladimir V. Tsukruk,et al.  Assembly of supramolecular polymers in ultrathin films , 1997 .

[54]  R. V. Duyne,et al.  Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces , 1995 .

[55]  M. Natan,et al.  Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates , 1995, Science.

[56]  M. Miyagi,et al.  Optical waveguides fabricated in anodic alumina films. , 1994, Optics letters.

[57]  R. Sperline,et al.  A surface-enhanced Raman scattering study of CTAB adsorption on copper , 1983 .