Mitotic clustering of pulverized chromosomes from micronuclei

[1]  I. Cortés-Ciriano,et al.  ReConPlot: an R package for the visualization and interpretation of genomic rearrangements , 2023, bioRxiv.

[2]  A. Heijink,et al.  Sister chromatid exchanges induced by perturbed replication can form independently of BRCA1, BRCA2 and RAD51 , 2022, Nature Communications.

[3]  Yang Yang,et al.  Starfish infers signatures of complex genomic rearrangements across human cancers , 2022, Nature Cancer.

[4]  D. Pellman,et al.  Breakage of cytoplasmic chromosomes by pathological DNA base excision repair , 2022, Nature.

[5]  B. van Steensel,et al.  Transgenerational transcriptional heterogeneity from cytoplasmic chromatin , 2022, bioRxiv.

[6]  Toshiro K. Ohsumi,et al.  The CIP2A–TOPBP1 axis safeguards chromosome stability and is a synthetic lethal target for BRCA-mutated cancer , 2021, Nature Cancer.

[7]  H. Maiato,et al.  An anaphase surveillance mechanism prevents micronuclei formation from frequent chromosome segregation errors , 2021, Cell reports.

[8]  A. Heijink,et al.  Sister chromatid exchanges induced by perturbed replication are formed independently of homologous recombination factors , 2021, bioRxiv.

[9]  D. Fox,et al.  Persistent DNA damage signaling and DNA polymerase theta promote broken chromosome segregation , 2021, bioRxiv.

[10]  L. Elo,et al.  CIP2A Interacts with TopBP1 and Drives Basal-Like Breast Cancer Tumorigenesis , 2021, Cancer Research.

[11]  D. Durocher,et al.  The CIP2A-TOPBP1 complex safeguards chromosomal stability during mitosis , 2021, Nature Communications.

[12]  Simon F Brunner,et al.  Chromothripsis drives the evolution of gene amplification in cancer , 2020, Nature.

[13]  James C. Wright,et al.  GENCODE 2021 , 2020, Nucleic Acids Res..

[14]  A. Constantinou,et al.  TopBP1 assembles nuclear condensates to switch on ATR signalling , 2020, bioRxiv.

[15]  Cheng-Zhong Zhang,et al.  Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing , 2020, Nature Genetics.

[16]  S. Grellscheid,et al.  Unrestrained ESCRT-III drives micronuclear catastrophe and chromosome fragmentation , 2020, Nature Cell Biology.

[17]  K. Stegmaier,et al.  Rapid and direct control of target protein levels with VHL-recruiting dTAG molecules , 2020, Nature Communications.

[18]  Steven J. M. Jones,et al.  Pan-cancer analysis of whole genomes , 2020, Nature.

[19]  P. Lieberman,et al.  Control of Viral Latency by Episome Maintenance Proteins. , 2020, Trends in microbiology.

[20]  K. Yuen,et al.  Genetic and epigenetic effects on centromere establishment , 2019, Chromosoma.

[21]  W. Kloosterman,et al.  Micronuclei-based model system reveals functional consequences of chromothripsis in human cells , 2019, eLife.

[22]  Kim Judge,et al.  MECHANISMS GENERATING CANCER GENOME COMPLEXITY FROM A SINGLE CELL DIVISION ERROR , 2019, Science.

[23]  Jake June-Koo Lee,et al.  Tracing Oncogene Rearrangements in the Mutational History of Lung Adenocarcinoma , 2019, Cell.

[24]  L. Pearl,et al.  MDC1 Interacts with TOPBP1 to Maintain Chromosomal Stability during Mitosis , 2019, Molecular cell.

[25]  D. Page,et al.  Chromosome Segregation Errors Generate a Diverse Spectrum of Simple and Complex Genomic Rearrangements , 2019, Nature Genetics.

[26]  Ken Chen,et al.  Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing , 2018, Nature Genetics.

[27]  F. Foijer,et al.  Non-random Mis-segregation of Human Chromosomes , 2018, bioRxiv.

[28]  Samuel F. Bakhoum,et al.  Chromosomal instability drives metastasis through a cytosolic DNA response , 2017, Nature.

[29]  D. Cleveland,et al.  Rebuilding Chromosomes After Catastrophe: Emerging Mechanisms of Chromothripsis. , 2017, Trends in cell biology.

[30]  J. Zuber,et al.  DNA Cross-Bridging Shapes a Single Nucleus from a Set of Mitotic Chromosomes , 2017, Cell.

[31]  Martin A. M. Reijns,et al.  cGAS surveillance of micronuclei links genome instability to innate immunity , 2017, Nature.

[32]  Dennis E Discher,et al.  Mitotic progression following DNA damage enables pattern recognition within micronuclei , 2017, Nature.

[33]  Ryan L. Collins,et al.  Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome , 2017, Genome Biology.

[34]  D. Page,et al.  Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining , 2016, Nature Cell Biology.

[35]  V. Barra,et al.  CENP-A Is Dispensable for Mitotic Centromere Function after Initial Centromere/Kinetochore Assembly. , 2016, Cell reports.

[36]  Gun Ho Jang,et al.  A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns , 2016, Nature.

[37]  Mario Schelhaas,et al.  Viral Genome Tethering to Host Cell Chromatin: Cause and Consequences , 2016, Traffic.

[38]  J. Mesirov,et al.  The Molecular Signatures Database Hallmark Gene Set Collection , 2015 .

[39]  T. Kruse,et al.  TopBP1 is required at mitosis to reduce transmission of DNA damage to G1 daughter cells , 2015, The Journal of cell biology.

[40]  Matthew Meyerson,et al.  CHROMOTHRIPSIS FROM DNA DAMAGE IN MICRONUCLEI , 2015, Nature.

[41]  D. Cleveland,et al.  DNA Sequence-Specific Binding of CENP-B Enhances the Fidelity of Human Centromere Function. , 2015, Developmental cell.

[42]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[43]  Ronald D. Vale,et al.  A Protein-Tagging System for Signal Amplification in Gene Expression and Fluorescence Imaging , 2014, Cell.

[44]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[45]  H. Maiato,et al.  Feedback control of chromosome separation by a midzone Aurora B gradient , 2014, Science.

[46]  T. Misteli,et al.  Spatial Dynamics of Chromosome Translocations in Living Cells , 2013, Science.

[47]  T. Deerinck,et al.  Catastrophic Nuclear Envelope Collapse in Cancer Cell Micronuclei , 2013, Cell.

[48]  E. Cuppen,et al.  Chromothripsis in congenital disorders and cancer: similarities and differences. , 2013, Current opinion in cell biology.

[49]  A. Sivachenko,et al.  Punctuated Evolution of Prostate Cancer Genomes , 2013, Cell.

[50]  J. Korbel,et al.  Criteria for Inference of Chromothripsis in Cancer Genomes , 2013, Cell.

[51]  Zhijian J. Chen,et al.  Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type I Interferon Pathway , 2013, Science.

[52]  Ira M. Hall,et al.  Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration , 2012, Nature Genetics.

[53]  David T. W. Jones,et al.  Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations , 2012, Cell.

[54]  Neil J Ganem,et al.  DNA breaks and chromosome pulverization from errors in mitosis , 2012, Nature.

[55]  Markus J. van Roosmalen,et al.  Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. , 2011, Human molecular genetics.

[56]  N. Carter,et al.  Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development , 2011, Cell.

[57]  R. Karess,et al.  BubR1- and Polo-Coated DNA Tethers Facilitate Poleward Segregation of Acentric Chromatids , 2010, Cell.

[58]  E. Birney,et al.  Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt , 2009, Nature Protocols.

[59]  M. Yaffe,et al.  MDC1 Directly Binds Phosphorylated Histone H2AX to Regulate Cellular Responses to DNA Double-Strand Breaks , 2005, Cell.

[60]  J. Mesirov,et al.  From the Cover: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005 .

[61]  Stephen J. Elledge,et al.  MDC1 is a mediator of the mammalian DNA damage checkpoint , 2003, Nature.

[62]  M. Yamada,et al.  A human Y-chromosome specific repeated DNA family (DYZ1) consists of a tandem array of pentanucleotides. , 1986, Nucleic acids research.

[63]  D. Fachinetti,et al.  Induction of chromosome-specific micronuclei and chromothripsis by centromere inactivation. , 2024, Methods in cell biology.

[64]  OUP accepted manuscript , 2021, Nucleic Acids Research.

[65]  J. Mesirov,et al.  The Molecular Signatures Database (MSigDB) hallmark gene set collection. , 2015, Cell systems.

[66]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[67]  R. Smith Cause and Consequences , 2011 .

[68]  R. D'Andrade Similarities and Differences , 2008 .

[69]  T. Kanda,et al.  Mitotic segregation of viral and cellular acentric extrachromosomal molecules by chromosome tethering. , 2001, Journal of cell science.

[70]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .