Interpolation of Hilbert and Sobolev Spaces: Quantitative Estimates and Counterexamples

This paper provides an overview of interpolation of Banach and Hilbert spaces, with a focus on establishing when equivalence of norms is in fact equality of norms in the key results of the theory. (In brief, our conclusion for the Hilbert space case is that, with the right normalizations, all the key results hold with equality of norms.) In the final section we apply the Hilbert space results to the Sobolev spaces $H^{s}({\rm\Omega})$ and $\widetilde{H}^{s}({\rm\Omega})$ , for $s\in \mathbb{R}$ and an open ${\rm\Omega}\subset \mathbb{R}^{n}$ . We exhibit examples in one and two dimensions of sets ${\rm\Omega}$ for which these scales of Sobolev spaces are not interpolation scales. In the cases where they are interpolation scales (in particular, if ${\rm\Omega}$ is Lipschitz) we exhibit examples that show that, in general, the interpolation norm does not coincide with the intrinsic Sobolev norm and, in fact, the ratio of these two norms can be arbitrarily large.

[1]  R. Kanwal Linear Integral Equations , 1925, Nature.

[2]  The interpolation of quadratic norms , 1967 .

[3]  Hamilton-Jacobi Equations,et al.  Multigrid Methods for , 2011 .

[4]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[5]  Vyacheslav S. Rychkov,et al.  On Restrictions and Extensions of the Besov and Triebel–Lizorkin Spaces with Respect to Lipschitz Domains , 1999 .

[6]  C. Bennett,et al.  Interpolation of operators , 1987 .

[7]  Tosio Kato Perturbation theory for linear operators , 1966 .

[8]  Peter W. Jones Quasiconformal mappings and extendability of functions in sobolev spaces , 1981 .

[9]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[10]  Y. Ameur Interpolation Between Hilbert Spaces , 2014, Trends in Mathematics.

[11]  Jacob T. Schwartz,et al.  Linear operators. Part II. Spectral theory , 2003 .

[12]  Vladimir Maz’ya,et al.  Sobolev Spaces: with Applications to Elliptic Partial Differential Equations , 2011 .

[13]  Y. Ameur Interpolation and Operator Constructions , 2014 .

[14]  Luke G. Rogers Degree-independent Sobolev extension on locally uniform domains , 2006 .

[15]  Simon N. Chandler-Wilde,et al.  Acoustic scattering by fractal screens: mathematical formulations and wavenumber-explicit continuity and coercivity estimates , 2014, 1401.2805.

[16]  Doctoral Thesis,et al.  Instituto de Matematica Pura e Aplicada , 2009 .

[17]  G. Burton Sobolev Spaces , 2013 .

[18]  F. Smithies Linear Operators , 2019, Nature.

[19]  S. Chandler-Wilde,et al.  Sobolev Spaces on Non-Lipschitz Subsets of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{doc , 2016, Integral Equations and Operator Theory.

[20]  John E. McCarthy Geometric interpolation between Hilbert spaces , 1992 .

[21]  Y. Ameur A new proof of Donoghue's interpolation theorem , 2004 .

[22]  L. Tartar An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .

[23]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[24]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[25]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .