Microscopic analysis of the chemical reaction between Fe(Te, Se) thin films and underlying CaF2
暂无分享,去创建一个
A. Ichinose | A. Maeda | S. Komiya | I. Tsukada | F. Nabeshima | Y. Imai | M. Hanawa | T. Akiike | Ichiro Tsukada
[1] P. Mele. Superconducting properties of iron chalcogenide thin films , 2012, Science and technology of advanced materials.
[2] S. Demura,et al. Phase diagram and oxygen annealing effect of FeTe1-xSex iron-based superconductor , 2011, 1111.6472.
[3] H. Ikuta,et al. Substrate Dependence of Structural and Transport Properties in FeSe0.5Te0.5 Thin Films , 2011 .
[4] H. Ikuta,et al. Epitaxial Growth of FeSe0.5Te0.5 Thin Films on CaF2 Substrates with High Critical Current Density , 2011, 1104.0477.
[5] T. Kiss,et al. In-field characterization of FeTe0.8S0.2 epitaxial thin films with enhanced superconducting properties , 2010 .
[6] H. Ikuta,et al. Systematic Comparison of Eight Substrates in the Growth of FeSe0.5Te0.5 Superconducting Thin Films , 2010, 1003.3314.
[7] A. Palenzona,et al. Tc=21 K in epitaxial FeSe0.5Te0.5 thin films with biaxial compressive strain , 2009, 0912.0876.
[8] A. Maeda,et al. Hall effect in superconducting Fe(Se0.5Te0.5) thin films , 2009, 0909.4985.
[9] A. Maeda,et al. Superconductivity of FeSe0.5Te0.5 Thin Films Grown by Pulsed Laser Deposition , 2009, 0910.2301.
[10] Peter D. Johnson,et al. Enhanced superconducting transition temperature in FeSe0.5Te0.5 thin films , 2009 .
[11] A. Palenzona,et al. High quality epitaxial FeSe0.5Te0.5 thin films grown on SrTiO3 substrates by pulsed laser deposition , 2009 .
[12] Karen Willcox,et al. Kinetics and kinematics for translational motions in microgravity during parabolic flight. , 2009, Aviation, space, and environmental medicine.
[13] T. Perng,et al. The development of the superconducting PbO-type β-FeSe and related compounds , 2009 .
[14] S. Zhang,et al. Preparation and superconductivity of iron selenide thin films , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[15] K. Kishio,et al. Superconductivity at 17 K in (Fe2P2)(Sr4Sc2O6): a new superconducting layered pnictide oxide with a thick perovskite oxide layer , 2009, 0903.3314.
[16] Y. Ohishi,et al. Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe ( T c = 37 K ) , 2009, 0903.2204.
[17] A. Sefat,et al. Bulk Superconductivity at 14 K in Single Crystals of Fe1+yTexSe1-x , 2009, 0902.1519.
[18] V. Ksenofontov,et al. Extreme sensitivity of superconductivity to stoichiometry in Fe1+δSe , 2008, 0811.1613.
[19] M. Fang,et al. Superconductivity close to magnetic instability in Fe ( Se 1 − x Te x ) 0.82 , 2008, 0807.4775.
[20] Y. Takano,et al. Superconductivity at 27K in tetragonal FeSe under high pressure , 2008, 0807.4315.
[21] F. Hsu,et al. Superconductivity in the PbO-type structure α-FeSe , 2008, Proceedings of the National Academy of Sciences.
[22] Fengying Li,et al. The superconductivity at 18 K in LiFeAs system , 2008, 0806.4688.
[23] D. Johrendt,et al. Spin-density-wave anomaly at 140 K in the ternary iron arsenide BaFe 2 As 2 , 2008, 0805.4021.
[24] Hideo Hosono,et al. Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.
[25] Hiroyuki Ishibashi,et al. Oriented growth of large size calcium fluoride single crystals for optical lithography , 2005 .