Existence and stability of ground states for fully discrete approximations of the nonlinear Schrödinger equation

In this paper we study the long time behavior of a discrete approximation in time and space of the cubic nonlinear Schrödinger equation on the real line. More precisely, we consider a symplectic time splitting integrator applied to a discrete nonlinear Schrödinger equation with additional Dirichlet boundary conditions on a large interval. We give conditions ensuring the existence of a numerical ground state which is close in energy norm to the continuous ground state. Such result is valid under a CFL condition of the form $$\tau h^{-2}\le C$$ where $$\tau $$ and $$h$$ denote the time and space step size respectively. Furthermore we prove that if the initial datum is symmetric and close to the continuous ground state $$\eta $$ then the associated numerical solution remains close to the orbit of $$\eta ,\Gamma =\cup _\alpha \{e^{i\alpha }\eta \}$$, for very long times.

[1]  Michel C. Delfour,et al.  Finite-difference solutions of a non-linear Schrödinger equation , 1981 .

[2]  Michael I. Weinstein,et al.  Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .

[3]  B. Herbst,et al.  Split-step methods for the solution of the nonlinear Schro¨dinger equation , 1986 .

[4]  A. Durán,et al.  The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation , 2000 .

[5]  J. G. Verwer,et al.  Conerservative and Nonconservative Schemes for the Solution of the Nonlinear Schrödinger Equation , 1986 .

[6]  J. Shatah,et al.  Stability theory of solitary waves in the presence of symmetry, II☆ , 1990 .

[7]  G. Akrivis,et al.  On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation , 1991 .

[8]  S. Reich Backward Error Analysis for Numerical Integrators , 1999 .

[9]  Z. Fei,et al.  Numerical simulation of nonlinear Schro¨dinger systems: a new conservative scheme , 1995 .

[10]  Orbital stability of numerical periodi nonlinear Schrödinger equation , 2008 .

[11]  B.L.G. Jonsson,et al.  Solitary Wave Dynamics in an External Potential , 2003 .

[12]  John C. Nash Introduction to Numerical Linear Algebra and Optimisation (Philippe G. Ciarlet with Bernadette Miara and Jean-Marie Thomas; A. Buttigieg, trans.) , 1990, SIAM Rev..

[13]  D. Bambusi,et al.  Continuous approximation of breathers in one- and two-dimensional DNLS lattices , 2009, 0909.1942.

[14]  Christophe Besse,et al.  A Relaxation Scheme for the Nonlinear Schrödinger Equation , 2004, SIAM J. Numer. Anal..

[15]  J. M. Sanz-Serna,et al.  Methods for the numerical solution of the nonlinear Schroedinger equation , 1984 .

[16]  Erwan Faou,et al.  Hamiltonian Interpolation of Splitting Approximations for Nonlinear PDEs , 2009, Found. Comput. Math..

[17]  Erwan Faou,et al.  Geometric Numerical Integration and Schrodinger Equations , 2012 .

[18]  Catherine Sulem,et al.  The nonlinear Schrödinger equation , 2012 .

[19]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[20]  P. G. Ciarlet,et al.  Introduction to Numerical Linear Algebra and Optimisation , 1989 .

[21]  G. Benettin,et al.  On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms , 1994 .

[22]  A. Durán,et al.  The numerical integration of relative equilibrium solutions. Geometric theory , 1998 .