Transformation of electronic properties and structural phase transition from HfN to Hf3N4

We report investigation of the structural phase transition and electronic properties of Hf1−x N (0 ⩽ x ⩽ 0.25) using first principles calculations. The defective NaCl-type structure with Hf vacancies (VHf) is found to be stable over a large phase region. Hf3N4 with the Zr3N4-type structure is only stable in relative small region and readily destabilized when the stoichiometric ratio of N to Hf deviates from 4/3. The electronic and optic properties of Hf1−x N are controlled by the concentration of VHf. The full depletion of excess free electrons from Hf atoms results in the structural phase transition of Hf3N4.

[1]  David J. Singh,et al.  Identification of a potential superhard compound ReCN , 2015 .

[2]  Q. Meng,et al.  On the nature of point defect and its effect on electronic structure of rocksalt hafnium nitride films , 2014 .

[3]  D. Gall,et al.  Electronic and bonding analysis of hardness in pyrite-type transition-metal pernitrides , 2014 .

[4]  Xiaofeng Fan,et al.  Nature of Tunable Optical Reflectivity of Rocksalt Hafnium Nitride Films , 2014 .

[5]  T. Jaramillo,et al.  Controlling the Structural and Optical Properties of Ta3N5 Films through Nitridation Temperature and the Nature of the Ta Metal , 2014 .

[6]  D. Gall,et al.  Structural, mechanical and electronic properties of 3d transition metal nitrides in cubic zincblende, rocksalt and cesium chloride structures: a first-principles investigation , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  Wei Wei,et al.  Unusual particle-size-induced promoter-to-poison transition of ZrN in counter electrodes for dye-sensitized solar cells , 2013 .

[8]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[9]  P. McMillan,et al.  Synthesis of Tetragonal and Orthorhombic Polymorphs of Hf3N4 by High-Pressure Annealing of a Prestructured Nanocrystalline Precursor , 2013, Journal of the American Chemical Society.

[10]  R. Hołyst,et al.  Evaporation of freely suspended single droplets: experimental, theoretical and computational simulations , 2013, Reports on progress in physics. Physical Society.

[11]  M. Fatmi,et al.  Theoretical prediction of the structural, elastic, electronic and optical properties of Zr3N4 and Hf3N4 compounds , 2011 .

[12]  D. Depla,et al.  Sputter deposited transition metal nitrides as back electrode for CIGS solar cells , 2011 .

[13]  S. M. Durbin,et al.  Tunable electrical and optical properties of hafnium nitride thin films , 2010 .

[14]  G. Stauf,et al.  New Tantalum Amido Complexes with Chelate Ligands as Metalorganic (MO) Precursors for Chemical Vapor Deposition (CVD) of Tantalum Nitride Thin Films , 2010 .

[15]  A. Chroneos,et al.  Mechanisms of nonstoichiometry in HfN1−x , 2009 .

[16]  Handong Sun,et al.  A first-principle analysis on the phase stabilities, chemical bonds and band gaps of wurtzite structure AxZn1−xO alloys (A = Ca, Cd, Mg) , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  S. Marsillac,et al.  Super hard cubic phases of period VI transition metal nitrides: First principles investigation , 2008 .

[18]  B. Sadigh,et al.  Synthesis and characterization of nitrides of iridium and palladium , 2008 .

[19]  T. Nabatame,et al.  High Temperature Annealing-Induced Phase Transformation Characteristic of Nitrogen-Rich Hafnium Nitride Films , 2006 .

[20]  K. Nordlund,et al.  Anisotropic elasticity of IVB transition-metal mononitrides determined by ab initio calculations , 2006 .

[21]  Sandro Scandolo,et al.  Synthesis of novel transition metal nitrides IrN2 and OsN2. , 2006, Physical review letters.

[22]  M. Lazzeri,et al.  Interstitial dinitrogen makes PtN2 an insulating hard solid , 2006 .

[23]  Babak Sadigh,et al.  Synthesis and Characterization of the Nitrides of Platinum and Iridium , 2006, Science.

[24]  Qian Zhan,et al.  Elastic stability and electronic structure of pyrite type PtN2: A hard semiconductor , 2006 .

[25]  Georg Kresse,et al.  The Perdew-Burke-Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. , 2005, The Journal of chemical physics.

[26]  Jinwang Li,et al.  Synthesis of nanocrystalline Zr3N4 and Hf3N4 powders from metal dialkylamides , 2005 .

[27]  H. Seo,et al.  Epitaxial and polycrystalline HfNx (0.8⩽x⩽1.5) layers on MgO(001): Film growth and physical properties , 2005 .

[28]  M. Chhowalla,et al.  Thin films of hard cubic Zr3N4 stabilized by stress , 2005, Nature materials.

[29]  A. A. Safonov,et al.  Structure and electronic properties of zirconium and hafnium nitrides and oxynitrides , 2005 .

[30]  Julong He,et al.  Hardness of cubic spinel Si3N4 , 2004 .

[31]  Russell J. Hemley,et al.  Synthesis and characterization of a binary noble metal nitride , 2004, Nature materials.

[32]  P. Kroll Assessment of the Hf–N, Zr–N and Ti–N phase diagrams at high pressures and temperatures: balancing between MN and M3N4 (M = Hf, Zr, Ti) , 2004 .

[33]  F. Lévy,et al.  Optical and electronic properties of magnetron sputtered ZrNx thin films , 2004 .

[34]  Peter Kroll,et al.  Hafnium nitride with thorium phosphide structure: physical properties and an assessment of the Hf-N, Zr-N, and Ti-N phase diagrams at high pressures and temperatures. , 2003, Physical review letters.

[35]  R. Riedel,et al.  Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure , 2003, Nature materials.

[36]  C. Stampfl,et al.  Metallic to insulating nature of TaN x : Role of Ta and N vacancies , 2003 .

[37]  W. Ching,et al.  Electronic and dielectric properties of insulating Zr 3 N 4 , 2002 .

[38]  C. Stampfl,et al.  Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations , 2001 .

[39]  Hugh O. Pierson,et al.  Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications , 1996 .

[40]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[41]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[42]  W. H. Baur,et al.  On Deciding between Space Groups Pnam and Pna21 for the Crystal Structure of Zr3N4 , 1996 .

[43]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[44]  M. Lerch,et al.  Synthesis, Crystal Structure, and High Temperature Behavior of Zr3N4. , 1996 .

[45]  R. Gordon,et al.  Chemical Vapor Deposition of Titanium, Zirconium, and Hafnium Nitride Thin Films. , 1992 .

[46]  J. Cuomo,et al.  Higher nitrides of hafnium, zirconium, and titanium synthesized by dual ion beam deposition , 1986 .

[47]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[48]  J. Venables,et al.  Electron diffraction and the structure of α-N2 , 1974 .

[49]  Yexiang Tong,et al.  Recent advances in metal nitrides as high-performance electrode materials for energy storage devices , 2015 .

[50]  D. Gupta,et al.  Structural, electronic, mechanical and thermo-physical properties of TMN (TM = Ti, Zr and Hf) under high pressures: A first-principle study , 2014 .

[51]  M. Chhowalla,et al.  Thin fi lms of hard cubic Zr 3 N 4 stabilized by stress , 2005 .