A new numerical strategy with space-time adaptivity and error control for multi-scale gas discharge simulations ✩

This paper presents a new resolution strategy for multi-scale gas discharge simulations based on a second order time adaptive integration and space adaptive multiresolution. A classical fluid model is used to model plasma discharges, considering drift-diffusion equations and electric field computation. The proposed numerical method provides a time-space accuracy control of the solution, and thus, an effective accurate resolution independent of the fastest physical time scale. Important improvement of computational efficiency is achieved whenever the required time steps go beyond standard stability constraints associated with mesh size or source time scales for the resolution of driftdiffusion equations, whereas stability constraint related to dielectric relaxation time scale is respected but with second order precision. Numerical illustrations show that the strategy can be efficiently applied to simulate propagation of highly nonlinear ionizing waves as streamer discharges, as well as highly multi-scale nanosecond repetitively pulsed discharges, describing consistently a broad spectrum of space and time scales as well as different physical scenarios for consecutive discharge/post-discharge phases, out of reach of standard non-adaptive methods.

[1]  A. Bourdon,et al.  The use of the ghost fluid method for Poisson's equation to simulate streamer propagation in point-to-plane and point-to-point geometries , 2009 .

[2]  Marc Massot,et al.  Adaptive Time-Space Algorithms for the Simulation of Multi-scale Reaction Waves , 2011 .

[3]  Marc Massot,et al.  Simulation of human ischemic stroke in realistic 3D geometry , 2010, Commun. Nonlinear Sci. Numer. Simul..

[4]  N. Babaeva,et al.  Two-dimensional modelling of positive streamer dynamics in non-uniform electric fields in air , 1996 .

[5]  D. Veynante,et al.  Stabilization of a Turbulent Premixed Flame Using a Nanosecond Repetitively Pulsed Plasma , 2006, IEEE Transactions on Plasma Science.

[6]  Marc Massot,et al.  New Resolution Strategy for Multiscale Reaction Waves using Time Operator Splitting, Space Adaptive Multiresolution, and Dedicated High Order Implicit/Explicit Time Integrators , 2012, SIAM J. Sci. Comput..

[7]  I. A. Kossyi,et al.  Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures , 1992 .

[8]  Marc Massot,et al.  Operator splitting for nonlinear reaction-diffusion systems with an entropic structure : singular perturbation and order reduction , 2004, Numerische Mathematik.

[9]  A. Kulikovsky POSITIVE STREAMER IN A WEAK FIELD IN AIR : A MOVING AVALANCHE-TO-STREAMER TRANSITION , 1998 .

[10]  A. Luque,et al.  Probing photo-ionization: simulations of positive streamers in varying N2 : O2-mixtures , 2010, 1008.3309.

[11]  Albert Cohen,et al.  Wavelet methods in numerical analysis , 2000 .

[12]  Robert J. Hoekstra,et al.  Two‐dimensional hybrid model of inductively coupled plasma sources for etching , 1993 .

[13]  J. Paillol,et al.  A new one-dimensional moving mesh method applied to the simulation of streamer discharges , 2007 .

[14]  A. Kulikovsky Positive streamer between parallel plate electrodes in atmospheric pressure air , 1997 .

[15]  N. Babaeva,et al.  Dynamics of positive and negative streamers in air in weak uniform electric fields , 1997 .

[16]  Anne Bourdon,et al.  Influence of the pre-ionization background and simulation of the optical emission of a streamer discharge in preheated air at atmospheric pressure between two point electrodes , 2010 .

[17]  G. Hagelaar,et al.  Speeding Up Fluid Models for Gas Discharges by Implicit Treatment of the Electron Energy Source Term , 2000 .

[18]  S. Pancheshnyi Role of electronegative gas admixtures in streamer start, propagation and branching phenomena , 2005 .

[19]  Robert A. Millikan,et al.  Fields currents from points , 1928 .

[20]  François Rogier,et al.  Multi-scale gas discharge simulations using asynchronous adaptive mesh refinement , 2010, Comput. Phys. Commun..

[21]  Christian Tenaud,et al.  High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations , 2004 .

[22]  S. Celestin Study of the dynamics of streamers in air at atmospheric pressure , 2008 .

[23]  P. Colella,et al.  A Conservative Finite Difference Method for the Numerical Solution of Plasma Fluid Equations , 1999 .

[24]  E. M. Veldhuizen,et al.  Electrical discharges for environmental purposes : fundamentals and applications , 2000 .

[25]  Morrow Theory of negative corona in oxygen. , 1985, Physical review. A, General physics.

[26]  V.I. Kolobov,et al.  Streamer Simulations With Dynamically Adaptive Cartesian Mesh , 2008, IEEE Transactions on Plasma Science.

[27]  Assyr Abdulle,et al.  Fourth Order Chebyshev Methods with Recurrence Relation , 2001, SIAM J. Sci. Comput..

[28]  Bardsley,et al.  Simulation of negative-streamer dynamics in nitrogen. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  S. Starikovskaia,et al.  Role of photoionization processes in propagation of cathode-directed streamer , 2001 .

[30]  Siegfried Müller,et al.  Adaptive Multiscale Schemes for Conservation Laws , 2002, Lecture Notes in Computational Science and Engineering.

[31]  Marc Massot,et al.  Adaptive time splitting method for multi-scale evolutionary partial differential equations , 2011, 1104.3697.

[32]  D. Pai,et al.  Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure , 2010 .

[33]  Willem Hundsdorfer,et al.  Spontaneous branching of anode-directed streamers between planar electrodes. , 2001, Physical review letters.

[34]  Marc Massot,et al.  New Resolution Strategy for Multi-scale Reaction Waves using Time Operator Splitting and Space Adaptive Multiresolution: Application to Human Ischemic Stroke , 2011 .

[35]  Lothar Schäfer,et al.  Multiple scales in streamer discharges, with an emphasis on moving boundary approximations , 2010 .

[36]  C. Evans,et al.  Electrical breakdown of gases : the spatio-temporal growth of ionization in fields distorted by space charge , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[37]  Willem Hundsdorfer,et al.  An adaptive grid refinement strategy for the simulation of negative streamers , 2006, J. Comput. Phys..

[38]  A. Fridman,et al.  Non-thermal atmospheric pressure discharges , 2005 .

[39]  George E. Georghiou,et al.  Three-dimensional numerical modelling of gas discharges at atmospheric pressure incorporating photoionization phenomena , 2011 .

[40]  Mikhail S. Benilov,et al.  Modelling of low-current discharges in atmospheric-pressure air taking account of non-equilibrium effects , 2003 .

[41]  J. Lowke,et al.  Streamer propagation in air , 1997 .

[42]  J. Jackson Classical Electrodynamics, 3rd Edition , 1998 .

[43]  A. Bourdon,et al.  Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and the Helmholtz equations , 2007 .

[44]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[45]  Anne Bourdon,et al.  Numerical simulation of filamentary discharges with parallel adaptive mesh refinement , 2008, J. Comput. Phys..

[46]  W. Hundsdorfer,et al.  Interaction of streamer discharges in air and other oxygen-nitrogen mixtures. , 2007, Physical review letters.

[47]  C. S. Davies,et al.  Computer simulation of rapidly developing gaseous discharges , 1971 .

[48]  A. Kulikovsky The role of photoionization in positive streamer dynamics , 2000 .

[49]  Mikhail N. Shneider,et al.  Surface charge in dielectric barrier discharge plasma actuators , 2008 .

[50]  P. Williams,et al.  Two‐dimensional studies of streamers in gases , 1987 .

[51]  Albert Cohen,et al.  Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..

[52]  A. Harten Multiresolution algorithms for the numerical solution of hyperbolic conservation laws , 2010 .

[53]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[54]  I Abbas,et al.  A critical analysis of ionising wave propagation mechanisms in breakdown , 1980 .

[55]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .