A Bayesian view of single-qubit clocks, and an energy versus accuracy tradeoff

We bring a Bayesian viewpoint to the analysis of clocks. Using exponential distributions as priors for clocks, we analyze the case of a single precessing spin. We find that, at least with a single qubit, quantum mechanics does not allow exact timekeeping, in contrast to classical mechanics which does. We find the optimal ratio of angular velocity of precession to rate of the exponential distribution that leads to maximum accuracy. Further, we find an energy versus accuracy tradeoff - the energy cost is at least kBT times the improvement in accuracy as measured by the entropy reduction in going from the prior distribution to the posterior distribution.

[1]  Manoj Gopalkrishnan The Hot Bit I: The Szilard-Landauer Correspondence , 2013, ArXiv.

[2]  F. Brandão,et al.  Reversible Framework for Quantum Resource Theories. , 2015, Physical review letters.

[3]  Michal Horodecki,et al.  The second laws of quantum thermodynamics , 2013, Proceedings of the National Academy of Sciences.

[4]  F. Brandão,et al.  Resource theory of quantum states out of thermal equilibrium. , 2011, Physical review letters.

[5]  C. Timm Tunneling through molecules and quantum dots: Master-equation approaches , 2008, 0801.1075.

[6]  F. Brandão,et al.  Entanglement theory and the second law of thermodynamics , 2008, 0810.2319.

[7]  Tetsunao Matsuta,et al.  国際会議開催報告:2013 IEEE International Symposium on Information Theory , 2013 .

[8]  Andreas J. Winter,et al.  A Resource Framework for Quantum Shannon Theory , 2008, IEEE Transactions on Information Theory.

[9]  Nicole Yunger Halpern,et al.  The resource theory of informational nonequilibrium in thermodynamics , 2013, 1309.6586.

[10]  L. Szilard On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. , 1964, Behavioral science.

[11]  Jonathan Oppenheim,et al.  Are the laws of entanglement theory thermodynamical? , 2002, Physical review letters.

[12]  W. Mckinnon,et al.  An exact determination of the mean dwell time based on the quantum clock of Salecker and Wigner , 1994 .

[13]  Paul Erker,et al.  The Quantum Hourglass , 2014 .

[14]  E. Wigner,et al.  Quantum Limitations of the Measurement of Space-Time Distances , 1958 .

[15]  M. Horodecki,et al.  QUANTUMNESS IN THE CONTEXT OF) RESOURCE THEORIES , 2012, 1209.2162.

[16]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[17]  D. Janzing,et al.  Thermodynamic Cost of Reliability and Low Temperatures: Tightening Landauer's Principle and the Second Law , 2000, quant-ph/0002048.

[18]  D. Longmore The principles of magnetic resonance. , 1989, British medical bulletin.

[19]  Changsoo Park Barrier interaction time and the Salecker-Wigner quantum clock: Wave-packet approach , 2009 .

[20]  J. T. Lunardi,et al.  SaleckerWignerPeres clock and average tunneling times , 2011, 1108.3037.

[21]  M. Horodecki,et al.  Fundamental limitations for quantum and nanoscale thermodynamics , 2011, Nature Communications.

[22]  Asher Peres,et al.  Measurement of time by quantum clocks , 1980 .

[23]  M. Wilde,et al.  Optical Atomic Clocks , 2019, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC).

[24]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[25]  R. Abreu The Thermodynamics of Time , 2015 .