Filling-in missing objects in orders

Filling-in techniques are important, since missing values frequently appear in real data. Such techniques have been established for categorical or numerical values. Though lists of ordered objects are widely used as representational forms (e.g., Web search results, best-seller lists), filling-in techniques for orders have received little attention. We therefore propose a simple but effective technique to fill-in missing objects in orders. We built this technique into our collaborative filtering system.

[1]  L. Thurstone A law of comparative judgment. , 1994 .

[2]  F. Mosteller Remarks on the method of paired comparisons: I. The least squares solution assuming equal standard deviations and equal correlations , 1951 .

[3]  John Riedl,et al.  E-Commerce Recommendation Applications , 2004, Data Mining and Knowledge Discovery.

[4]  C. Osgood,et al.  The Measurement of Meaning , 1958 .

[5]  John D. Lafferty,et al.  Cranking: Combining Rankings Using Conditional Probability Models on Permutations , 2002, ICML.

[6]  Philip S. Yu,et al.  Horting hatches an egg: a new graph-theoretic approach to collaborative filtering , 1999, KDD '99.

[7]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[8]  Shotaro Akaho,et al.  Estimating Attributed Central Orders: An Empirical Comparison , 2004, ECML.

[9]  B. Arnold,et al.  A first course in order statistics , 1994 .

[10]  Tsutomu Hirao,et al.  Order SVM: a kernel method for order learning based on generalized order statistics , 2005, Systems and Computers in Japan.

[11]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[12]  Shotaro Akaho,et al.  Learning from Order Examples , 2002 .

[13]  S. S. Stevens Mathematics, measurement, and psychophysics. , 1951 .

[14]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[15]  D. Farnsworth A First Course in Order Statistics , 1993 .

[16]  Loriene Roy,et al.  Content-based book recommending using learning for text categorization , 1999, DL '00.

[17]  K. Obermayer,et al.  Learning Preference Relations for Information Retrieval , 1998 .

[18]  X. Ren,et al.  Mathematics , 1935, Nature.

[19]  J. Marden Analyzing and Modeling Rank Data , 1996 .

[20]  Toshihiro Kamishima,et al.  Nantonac collaborative filtering: recommendation based on order responses , 2003, KDD '03.

[21]  C. F. Kossack,et al.  Rank Correlation Methods , 1949 .

[22]  Heikki Mannila,et al.  Global partial orders from sequential data , 2000, KDD '00.

[23]  Yiyu Yao,et al.  Data analysis and mining in ordered information tables , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[24]  Yoram Singer,et al.  Learning to Order Things , 1997, NIPS.

[25]  Yoram Singer,et al.  An Efficient Boosting Algorithm for Combining Preferences by , 2013 .

[26]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[27]  M. Kendall,et al.  Rank Correlation Methods , 1949 .

[28]  Jun Fujiki,et al.  Clustering Orders , 2003, Discovery Science.