Convergence properties of ab initio calculations of light nuclei in a harmonic oscillator basis

We study recently proposed ultraviolet and infrared momentum regulators of the model spaces formed by construction of a variational trial wavefunction which uses a complete set of many-body basis states based upon three-dimensional harmonic oscillator (HO) functions. These model spaces are defined by a truncation of the expansion characterized by a counting number ($\mathcal{N}$) and by the intrinsic scale ($\hbar\omega$) of the HO basis; in short by the ordered pair ($\mathcal{N},\hbar\omega$). In this study we choose for $\mathcal{N}$ the truncation parameter $N_{max}$ related to the maximum number of oscillator quanta, above the minimum configuration, kept in the model space. The ultraviolet (uv) momentum cutoff of the continuum is readily mapped onto a defined uv cutoff in this finite model space, but there are two proposed definitions of the infrared (ir) momentum cutoff inherent in a finite-dimensional HO basis. One definition is based upon the lowest momentum difference given by $\hbar\omega$ itself and the other upon the infrared momentum which corresponds to the maximal radial extent used to encompass the many-body system in coordinate space. Extending both the uv cutoff to infinity and the ir cutoff to zero is prescribed for a converged calculation. We calculate the ground state energy of light nuclei with "bare" and "soft" $NN$ interactions. By doing so, we investigate the behaviors of the uv and ir regulators of model spaces used to describe $^2$H, $^3$H, $^4$He and $^6$He with $NN$ potentials Idaho N$^3$LO and JISP16. We establish practical procedures which utilize these regulators to obtain the extrapolated result from sequences of calculations with model spaces characterized by ($\mathcal{N},\hbar\omega$).

[1]  R. Newton,et al.  Energy Level Shifts in a Large Enclosure , 1956 .

[2]  D. R. Entem,et al.  Accurate charge dependent nucleon nucleon potential at fourth order of chiral perturbation theory , 2003 .

[3]  S. Rosati,et al.  A high-precision variational approach to three- and four-nucleon bound and zero-energy scattering states , 2008, 0805.4688.

[4]  T. Schneider Convergence of generalized spherical harmonic expansions in the three nucleon bound state , 1972 .

[5]  R. J. Furnstahl,et al.  Evolution of nuclear many-body forces with the similarity renormalization group. , 2009, Physical review letters.

[6]  M. Hjorth-Jensen,et al.  Effective interactions, large-scale diagonalization, and one-dimensional quantum dots , 2007, 0704.2477.

[7]  Ab initio shell model with a genuine three-nucleon force for the p-shell nuclei , 2003, nucl-th/0305090.

[8]  P. Navrátil,et al.  Nuclear Electric Dipole Moment of 3He , 2008, 0804.3815.

[9]  S. Bacca,et al.  Helium halo nuclei from low-momentum interactions , 2009, 0902.1696.

[10]  N. Barnea,et al.  Hyperspherical effective interaction for nonlocal potentials , 2010 .

[11]  H. Hammer,et al.  The triton in a finite volume , 2010, 1008.4499.

[12]  S. Beane,et al.  Pions in the pionless effective field theory , 2002, nucl-th/0204046.

[13]  O. Portilho Be hypernucleus in the four-body model , 1999 .

[14]  S. Quaglioni,et al.  Three-nucleon low-energy constants from the consistency of interactions and currents in chiral effective field theory. , 2008, Physical review letters.

[15]  S. Rosati,et al.  Calculation of the α-Particle Ground State , 1995 .

[16]  P. Navrátil,et al.  Large basis ab initio shell model investigation of 9Be and 11Be , 2004, nucl-th/0412049.

[17]  N. Barnea,et al.  He6β-decay rate and the suppression of the axial constant in nuclear matter , 2009, 0903.1048.

[18]  S. Kvaal Harmonic oscillator eigenfunction expansions, quantum dots, and effective interactions , 2008, 0808.2145.

[19]  C. Hanhart,et al.  Towards a high-precision calculation for the pion-nucleus scattering lengths , 2010, 1003.3826.

[20]  N. Barnea,et al.  Improved Effective Interaction for the Hyperspherical Formalism , 2003 .

[21]  Nuclear structure with accurate chiral perturbation theory nucleon-nucleon potential: Application to 6Li and 10B , 2003, nucl-th/0311036.

[22]  J. D. Morgan The Analytic Structure of Atomic and Molecular Wavefunctions and its Impact on the Rate of Convergence of Variational Calculations , 1989 .

[23]  Y. Yamaguchi Two nucleon problem when the potential is nonlocal but separable. 1. , 1954 .

[24]  S. Coon,et al.  9Be and 6He hypernuclei calculations , 1991 .

[25]  Masha Sosonkina,et al.  Scaling of ab-initio nuclear physics calculations on multicore computer architectures , 2010, ICCS.

[26]  S. Coon,et al.  Variational methods for the few-body bound state in a harmonic oscillator basis , 1987 .

[27]  P. Navrátil,et al.  Few-nucleon systems in a translationally invariant harmonic oscillator basis , 1999, nucl-th/9907054.

[28]  M. Moshinsky,et al.  The harmonic oscillator in modern physics : from atoms to quarks , 1969 .

[29]  A. D. Jackson,et al.  Triton binding energy calculations in a harmonic oscillator basis , 1970 .

[30]  S. Quaglioni,et al.  Recent developments in no-core shell-model calculations , 2009, 0904.0463.

[31]  S. H. Gould,et al.  Variational Methods for Eigenvalue Problems: An Introduction to the Methods of Rayleigh, Ritz, Weinstein, and Aronszajn , 1966 .

[32]  S. Coon,et al.  Three-alpha force and the 3-α model of12C , 1979 .

[33]  J. Vary,et al.  Converging sequences in the ab initio no-core shell model , 2008, 0802.1611.

[34]  P. Navrátil,et al.  Feasibility study of a three-nucleon force in the no-core shell model: [Formula Presented] binding energy , 2002 .

[35]  A. Kallio On the relation between t-matrices in free scattering, nuclear matter and finite nuclei☆ , 1965 .

[36]  I. Stetcu,et al.  An effective field theory approach to two trapped particles , 2010, 1001.5071.

[37]  D. H. Gloeckner,et al.  Spurious center-of-mass motion , 1974 .

[38]  M. D. L. Ripelle,et al.  The potential harmonic expansion method , 1983 .

[39]  R. J. Perry,et al.  Convergence in the no-core shell model with low-momentum two-nucleon interactions , 2007, 0708.3754.

[40]  R. V. Reid Local phenomenological nucleon-nucleon potentials , 1968 .

[41]  S. Quaglioni,et al.  Electric dipole polarizabilities of hydrogen and helium isotopes , 2009, 0904.3732.

[42]  L. Delves Variational Techniques in the Nuclear Three-Body Problem , 1972 .

[43]  S. Quaglioni,et al.  Ab Initio Many-Body Calculations of Deuteron-4He Scattering And 6Li States , 2011, 1102.2042.

[44]  G. Hagen,et al.  Ab initio coupled-cluster approach to nuclear structure with modern nucleon-nucleon interactions , 2010, 1005.2627.

[45]  Tosio Kato,et al.  On the Eigenfunctions of Many-Particle Systems in Quantum Mechanics , 2011 .

[46]  A. I. Mazur,et al.  Nucleon–Nucleon Interaction in the J-Matrix Inverse Scattering Approach and Few-Nucleon Systems , 2003, nucl-th/0312029.

[47]  A. D. Jackson,et al.  Triton calculations in a harmonic oscillator basis with realistic potentials , 1971 .

[48]  J. Vary,et al.  Ab initio no-core full configuration calculations of light nuclei , 2008, 0808.3420.

[49]  A. I. Mazur,et al.  Realistic Nuclear Hamiltonian: Ab exitu approach , 2005, nucl-th/0512105.

[50]  Two and three nucleons in a trap, and the continuum limit , 2011, 1112.0267.