Applications of filter coefficients and wavelets parametrized by moments

Key words. Orthonormal wavelets, parametrized filter coefficients, moments, regu larity, H¨older andSobolev exponent, least asymmetric filters, rational filter coefficients.AMS classification. 42C40, 65T60, 94A12, 68W301 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1912 Wavelets and moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1923 Parametrizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1944 Regularity of scaling functions and wavelets . . . . . . . . . . . . . . . . . . . . . . . 2015 Least asymmetric filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2066 Rational filter coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

[1]  A. Haar Zur Theorie der orthogonalen Funktionensysteme , 1910 .

[2]  Jan E. Odegard,et al.  Nearly symmetric orthogonal wavelets with non-integer DC group delay , 1996, 1996 IEEE Digital Signal Processing Workshop Proceedings.

[3]  Martin Vetterli,et al.  Gröbner Bases and Multidimensional FIR Multirate Systems , 1997, Multidimens. Syst. Signal Process..

[4]  Otmar Scherzer,et al.  The Construction of Orthonormal Wavelets Using Symbolic Methods and a Matrix Analytical Approach for Wavelets on the Interval , 2001, Exp. Math..

[5]  Thierry BLUzAbstract SIMPLE REGULARITY CRITERIA FOR SUBDIVISION SCHEMES , 1997 .

[6]  M.N.S. Swamy,et al.  Design of least asymmetric compactly supported orthogonal wavelets via optimization , 1999, Engineering Solutions for the Next Millennium. 1999 IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.99TH8411).

[7]  Lina,et al.  Parametrizations for Daubechies wavelets. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Stefan Pittner,et al.  On the parametrization of the coefficients of dilation equations for compactly supported wavelets , 2005, Computing.

[9]  James Hereford,et al.  Image compression using parameterized wavelets with feedback , 2003, SPIE Defense + Commercial Sensing.

[10]  Ahmed H. Tewfik,et al.  Parametrization of compactly supported orthonormal wavelets , 1993, IEEE Trans. Signal Process..

[11]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[12]  C. Burrus,et al.  Maximally flat low-pass FIR filters with reduced delay , 1998 .

[13]  A. H. Tewfik,et al.  CORRECTION TO PARAMETRIZATION OF COMPACTLY SUPPORTED ORTHONORMAL WAVELETS , 1994 .

[14]  Ivan W. Selesnick,et al.  Symmetric nearly orthogonal and orthogonal nearly symmetric wavelets , 2004 .

[15]  Yang Wang,et al.  Compactly Supported Orthogonal Symmetric Scaling Functions , 1999 .

[16]  Bruno Buchberger,et al.  Bruno Buchberger's PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal , 2006, J. Symb. Comput..

[17]  W. Lawton Tight frames of compactly supported affine wavelets , 1990 .

[18]  I. Daubechies,et al.  Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .

[19]  Fabrice Rouillier,et al.  Design of regular nonseparable bidimensional wavelets using Grobner basis techniques , 1998, IEEE Trans. Signal Process..

[20]  G. Faltings Endlichkeitssätze für abelsche Varietäten über Zahlkörpern , 1983 .

[21]  N. K. Bose,et al.  Multidimensional FIR filter bank design using Grobner bases , 1999 .

[22]  Bjorn Poonen,et al.  COMPUTING RATIONAL POINTS ON CURVES , 2001 .

[23]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[24]  Otmar Scherzer,et al.  Symbolic Computation for Moments and Filter Coefficients of Scaling Functions , 2005 .

[25]  B. Buchberger Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems , 1970 .

[26]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[27]  Georg Regensburger,et al.  Parametrizing compactly supported orthonormal wavelets by discrete moments , 2007, Applicable Algebra in Engineering, Communication and Computing.

[28]  W. Lawton Necessary and sufficient conditions for constructing orthonormal wavelet bases , 1991 .

[29]  Hyungju Park,et al.  Symbolic computation and signal processing , 2004, J. Symb. Comput..

[30]  D. Pollen SU I (2, F [ z,1/z ]) for F A Subfield of C , 1990 .

[31]  Hans Volkmer,et al.  Asymptotic regularity of compactly supported wavelets , 1995 .

[32]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[33]  A. Y. Khinchin Continued Fractions (In Russian) , 1937 .

[34]  A. Cohen Ondelettes, analyses multirésolutions et filtres miroirs en quadrature , 1990 .

[35]  Raymond O. Wells Parametrizing smooth compactly supported wavelets , 1993 .

[36]  Peter N. Heller,et al.  The design of maximally smooth wavelets , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[37]  T. Eirola Sobolev characterization of solutions of dilation equations , 1992 .

[38]  Harri Ojanen,et al.  Orthonormal Compactly Supported Wavelets with Optimal Sobolev Regularity , 1998, math/9807089.

[39]  L. Villemoes Energy moments in time and frequency for two-scale difference equation solutions and wavelets , 1992 .

[40]  S. Mallat A wavelet tour of signal processing , 1998 .

[41]  Y. Meyer,et al.  Wavelets and Filter Banks , 1991 .

[42]  M. SIAMJ. CHARACTERIZATIONS OF SCALING FUNCTIONS: CONTINUOUS SOLUTIONS∗ , 1994 .

[43]  I. Daubechies Orthonormal bases of compactly supported wavelets II: variations on a theme , 1993 .

[44]  Thierry Blu,et al.  Wavelet theory demystified , 2003, IEEE Trans. Signal Process..

[45]  Martin Vetterli,et al.  High-order balanced multiwavelets: theory, factorization, and design , 2001, IEEE Trans. Signal Process..

[46]  Pierre Gilles Lemarié-Rieusset,et al.  More Regular Wavelets , 1998 .

[47]  Barry G. Sherlock,et al.  On the space of orthonormal wavelets , 1998, IEEE Trans. Signal Process..

[48]  Ivan W. Selesnick,et al.  Gröbner bases and wavelet design , 2004, J. Symb. Comput..