Applications of filter coefficients and wavelets parametrized by moments
暂无分享,去创建一个
[1] A. Haar. Zur Theorie der orthogonalen Funktionensysteme , 1910 .
[2] Jan E. Odegard,et al. Nearly symmetric orthogonal wavelets with non-integer DC group delay , 1996, 1996 IEEE Digital Signal Processing Workshop Proceedings.
[3] Martin Vetterli,et al. Gröbner Bases and Multidimensional FIR Multirate Systems , 1997, Multidimens. Syst. Signal Process..
[4] Otmar Scherzer,et al. The Construction of Orthonormal Wavelets Using Symbolic Methods and a Matrix Analytical Approach for Wavelets on the Interval , 2001, Exp. Math..
[5] Thierry BLUzAbstract. SIMPLE REGULARITY CRITERIA FOR SUBDIVISION SCHEMES , 1997 .
[6] M.N.S. Swamy,et al. Design of least asymmetric compactly supported orthogonal wavelets via optimization , 1999, Engineering Solutions for the Next Millennium. 1999 IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.99TH8411).
[7] Lina,et al. Parametrizations for Daubechies wavelets. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[8] Stefan Pittner,et al. On the parametrization of the coefficients of dilation equations for compactly supported wavelets , 2005, Computing.
[9] James Hereford,et al. Image compression using parameterized wavelets with feedback , 2003, SPIE Defense + Commercial Sensing.
[10] Ahmed H. Tewfik,et al. Parametrization of compactly supported orthonormal wavelets , 1993, IEEE Trans. Signal Process..
[11] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[12] C. Burrus,et al. Maximally flat low-pass FIR filters with reduced delay , 1998 .
[13] A. H. Tewfik,et al. CORRECTION TO PARAMETRIZATION OF COMPACTLY SUPPORTED ORTHONORMAL WAVELETS , 1994 .
[14] Ivan W. Selesnick,et al. Symmetric nearly orthogonal and orthogonal nearly symmetric wavelets , 2004 .
[15] Yang Wang,et al. Compactly Supported Orthogonal Symmetric Scaling Functions , 1999 .
[16] Bruno Buchberger,et al. Bruno Buchberger's PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal , 2006, J. Symb. Comput..
[17] W. Lawton. Tight frames of compactly supported affine wavelets , 1990 .
[18] I. Daubechies,et al. Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .
[19] Fabrice Rouillier,et al. Design of regular nonseparable bidimensional wavelets using Grobner basis techniques , 1998, IEEE Trans. Signal Process..
[20] G. Faltings. Endlichkeitssätze für abelsche Varietäten über Zahlkörpern , 1983 .
[21] N. K. Bose,et al. Multidimensional FIR filter bank design using Grobner bases , 1999 .
[22] Bjorn Poonen,et al. COMPUTING RATIONAL POINTS ON CURVES , 2001 .
[23] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[24] Otmar Scherzer,et al. Symbolic Computation for Moments and Filter Coefficients of Scaling Functions , 2005 .
[25] B. Buchberger. Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems , 1970 .
[26] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[27] Georg Regensburger,et al. Parametrizing compactly supported orthonormal wavelets by discrete moments , 2007, Applicable Algebra in Engineering, Communication and Computing.
[28] W. Lawton. Necessary and sufficient conditions for constructing orthonormal wavelet bases , 1991 .
[29] Hyungju Park,et al. Symbolic computation and signal processing , 2004, J. Symb. Comput..
[30] D. Pollen. SU I (2, F [ z,1/z ]) for F A Subfield of C , 1990 .
[31] Hans Volkmer,et al. Asymptotic regularity of compactly supported wavelets , 1995 .
[32] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[33] A. Y. Khinchin. Continued Fractions (In Russian) , 1937 .
[34] A. Cohen. Ondelettes, analyses multirésolutions et filtres miroirs en quadrature , 1990 .
[35] Raymond O. Wells. Parametrizing smooth compactly supported wavelets , 1993 .
[36] Peter N. Heller,et al. The design of maximally smooth wavelets , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.
[37] T. Eirola. Sobolev characterization of solutions of dilation equations , 1992 .
[38] Harri Ojanen,et al. Orthonormal Compactly Supported Wavelets with Optimal Sobolev Regularity , 1998, math/9807089.
[39] L. Villemoes. Energy moments in time and frequency for two-scale difference equation solutions and wavelets , 1992 .
[40] S. Mallat. A wavelet tour of signal processing , 1998 .
[41] Y. Meyer,et al. Wavelets and Filter Banks , 1991 .
[42] M. SIAMJ.. CHARACTERIZATIONS OF SCALING FUNCTIONS: CONTINUOUS SOLUTIONS∗ , 1994 .
[43] I. Daubechies. Orthonormal bases of compactly supported wavelets II: variations on a theme , 1993 .
[44] Thierry Blu,et al. Wavelet theory demystified , 2003, IEEE Trans. Signal Process..
[45] Martin Vetterli,et al. High-order balanced multiwavelets: theory, factorization, and design , 2001, IEEE Trans. Signal Process..
[46] Pierre Gilles Lemarié-Rieusset,et al. More Regular Wavelets , 1998 .
[47] Barry G. Sherlock,et al. On the space of orthonormal wavelets , 1998, IEEE Trans. Signal Process..
[48] Ivan W. Selesnick,et al. Gröbner bases and wavelet design , 2004, J. Symb. Comput..