L'UNIVERSITE DES SCIENCES ET TECHNOLOGIES DE LILLE Ecole Doctorale des Sciences de la Matière, du Rayonnement et de l'Environnement

Competition and globalisation imply a very accurate production and sourcing management of the TextileApparel-Distribution network actors. Face to the production and distribution constraints of the products (lead time relatively long and short lifetime of the items, ...), such an organization requires a sales forecasting system adapted to market uncertainties and distributor needs. The uncertain character of the sales is characterized by the influence of many not easily controllable and identified explanatory variables. The distributor must take into account mean-term forecasts (horizon : one season) in order to anticipate its production and its first provisioning. The readjustment of the short-term forecast (horizon: one to three weeks) is also necessary in order to correct the planning of the replenishments, throughout the season. Many forecasting models exist. However, they are generally unsuited to the textile context. Indeed, their capacities of training and modelling are often limited for the reduced and disturbed historical sales data. The user understanding and intervention are also often complicated when using traditional models. Thus, we propose a forecasting system, composed of several models which perform forecasts on various horizons and at different sales aggregation levels. This system is based on techniques resulting from soft computing such fuzzy logic, neural networks or the evolutionary procedures, authorizing the processing of uncertain data. Performances of our models are then evaluated and analysed on real data from a important textile distributor. Lastly, within the framework of a project called AIDE, this forecasting system is integrated in a decision-making aid tool for each actor of the textile network. DISCIPLINE : Productique – Automatique et Informatique Industrielle MOTS-CLES : Prévision des ventes, Prédiction des séries temporelles, Soft computing, Logistique de la filière Textile-Habillement-Distribution, Logique floue, Réseau de neurones artificiel, Algorithmes évolutionnistes KEY-WORDS : Sales forecasting, Time series prediction, Soft computing, Textile-Apparel-Distribution network logistics, Fuzzy logic, Artificial neural network, Evolutionary algorithm LABORATOIRE GEMTEX-ENSAIT 9, rue de l'ermitage – BP 30329 http//www.ensait.fr F-59056 ROUBAIX Cedex 01 INSTITUT FRANÇAIS DU TEXTILE ET DE L'HABILLEMENT 2, rue de la recherche http//www.ifth.org 59650 VILLENEUVE D'ASCQ Cedex

[1]  V. Prunier,et al.  Fatigue damage evaluation of a power plant component from analysis of the dislocation structures , 2000 .

[2]  V. Prunier,et al.  Mechanisms of Cyclic Plasticity of a Ferrite–Bainite 24 1 Cr1Mo Steel after Long-term Service at High Temperature , 1999 .

[3]  J. Mendez,et al.  On the effects of temperature and environment on fatigue damage processes in Ti alloys and in stainless steel , 1999 .

[4]  C. Vernault,et al.  Influence des couches d'oxyde sur l'endommagement par fatigue d'un acier inoxydable de type 316l , 1999 .

[5]  Krzysztof J. Kurzydłowski,et al.  Tensile properties of a type 316 stainless steel strained in air and vacuum , 1998 .

[6]  R. L. Hecht,et al.  The effect of environment on high-temperature hold time fatigue behavior of annealed 2.25 pct Cr 1 pct Mo steel , 1998 .

[7]  K. Hussain,et al.  SHORT FATIGUE CRACK BEHAVIOUR AND ANALYTICAL MODELS: A REVIEW , 1997 .

[8]  V. E. Panin,et al.  Plastic deformation and fracture of solids at the mesoscale level , 1997 .

[9]  J. Stolarz Multicracking in low cycle fatigue—a surface phenomenon? , 1997 .

[10]  Jaroslav Polák,et al.  Short crack growth kinetics and fatigue life of materials , 1997 .

[11]  Cevdet Kaynak,et al.  Initiation and early growth of short fatigue cracks at inclusions , 1996 .

[12]  K. Fukaura,et al.  Effect of Testing Atmosphere on Low Cycle Fatigue of Hot Work Tool Steel at Elevated Temperature , 1995 .

[13]  F. H. Hashmi,et al.  Short fatigue crack growth behavior in a ferritic-bainitic steel , 1994 .

[14]  A. Bataille,et al.  Surface damage accumulation in low-cycle fatigue: Physical analysis and numerical modelling , 1994 .

[15]  Z. Azari,et al.  UTILISATION D'UN MODELE PROBABILISTE POUR L'EVALUATION DES DIFFERENTS STADES DE CROISSANCE DE FISSURES ET DE L'ENDOMMAGEMENT EN FATIGUE OLIGOCYCLIQUE A CHAUD , 1994 .

[16]  J. Foct,et al.  Combined Effect of Nitrogen and Silicon on Low Cycle Fatigue of 12 % Cr Martensitic Stainless Steels / Zusammenwirkung von Stickstoff und Silicium auf die oligozyklischa Ermüdung von martensitischen rostfreien 12 %-Chromstählen , 1994 .

[17]  S. Ahila,et al.  High temperature stability of 2.25Cr-1Mo steel during creep , 1994 .

[18]  A. Navarro,et al.  A two-stage micromechanics model for short fatigue cracks , 1993 .

[19]  V. S. Raghunathan,et al.  Influence of carbon content on microstructure and tempering behaviour of 2 1/4 Cr 1 Mo steel , 1993, Journal of Materials Science.

[20]  Peter Williams,et al.  Mechanical Engineering Publications , 1989 .

[21]  M. Klesnil,et al.  Effect of elevated temperatures on the low cycle fatigue of 2.25Cr-1Mo steel. Part I: Constant amplitude straining , 1988 .

[22]  K. J. Miller,et al.  THE BEHAVIOUR OF SHORT FATIGUE CRACKS AND THEIR INITIATION PART I—A REVIEW OF TWO RECENT BOOKS , 1987 .

[23]  D. Majumdar,et al.  Surface deformation and crack initiation during fatigue of vacuum melted iron: Environmental effects , 1983 .

[24]  N. M. Grinberg The effect of vacuum on fatigue crack growth , 1982 .

[25]  N. Ridley,et al.  Tempering of 2.25 Pct Cr-1 Pct Mo Low Carbon Steels , 1982 .

[26]  D. Taplin,et al.  Analysis of carbides formed during accelerated aging of 2·25Cr–1Mo steel , 1982 .

[27]  P. Pizzo,et al.  Age Softening Characteristics of Annealed 2-1/4Cr-1Mo Steel in the Temperature Range 424 to 704°C , 1981 .

[28]  Alan K. Miller,et al.  An Explanation for the Effects of Hold Periods on the Elevated Temperature Fatigue Behavior of 2 1/4 Cr-1 Mo Steel , 1981 .

[29]  A. Mcevily,et al.  The effect of oxidation on hol time fatigue behavior of 2.25 Cr-1 Mo steel , 1979 .

[30]  D. Duquette Environmental Effects on General Fatigue Resistance and Crack Nucleation in Metals and Alloys. , 1978 .

[31]  M. Booker,et al.  Elevated temperature fatigue behavior of 2 1/4 Cr--1 Mo steel , 1975 .

[32]  O. Chopra,et al.  Substructural development during strain cycling of alpha-iron , 1974 .

[33]  K. Nishida,et al.  High-Temperature Properties of Steel Tubing for High Temperature and High-Pressure Service , 1973 .

[34]  K. U. Snowden Effect of Air Pressure on the Fatigue of Lead and Aluminium , 1961, Nature.