Loose Hamilton Cycles in Random 3-Uniform Hypergraphs

In the random hypergraph $H=H_{n,p;3}$ each possible triple appears independently with probability $p$. A loose Hamilton cycle can be described as a sequence of edges $\{x_i,y_i,x_{i+1}\}$ for $i=1,2,\ldots,n/2$ where $x_1,x_2,\ldots,x_{n/2},y_1,y_2,\ldots,y_{n/2}$ are all distinct. We prove that there exists an absolute constant $K>0$ such that if $p\geq {K\log n\over n^2}$ then $$\lim_{\textstyle{n\to \infty\atop 4|n}}\Pr(H_{n,p;3}\ contains\ a\ loose\ Hamilton\ cycle)=1.$$

[1]  R. M. Ziff,et al.  Triangle-duality and equality of infinitely many bond percolation thresholds , 2009 .

[2]  Christian R Scullard,et al.  Predictions of bond percolation thresholds for the kagomé and Archimedean (3, 12(2)) lattices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[4]  Wendelin Werner,et al.  CRITICAL EXPONENTS FOR TWO-DIMENSIONAL PERCOLATION , 2001 .

[5]  Scott Sheffield,et al.  Random Surfaces , 2003, math/0304049.

[6]  Alan M. Frieze,et al.  Generating and Counting Hamilton Cycles in Random Regular Graphs , 1996, J. Algorithms.

[7]  J. Komlos,et al.  First Occurrence of Hamilton Cycles in Random Graphs , 1985 .

[8]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[9]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[10]  Chris Scullard Exact site percolation thresholds using a site-to-bond transformation and the star-triangle transformation. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  H. Kesten Percolation theory for mathematicians , 1982 .

[12]  R. Ziff,et al.  Exact bond percolation thresholds in two dimensions , 2006, cond-mat/0610813.

[13]  J. Kahn,et al.  Factors in random graphs , 2008 .

[14]  Svante Janson,et al.  Random Regular Graphs: Asymptotic Distributions and Contiguity , 1995, Combinatorics, Probability and Computing.

[15]  John C. Wierman,et al.  Self-dual Planar Hypergraphs and Exact Bond Percolation Thresholds , 2011, Electron. J. Comb..

[16]  Geoffrey Grimmett The Random-Cluster Model , 2002, math/0205237.

[17]  Matthew R A Sedlock,et al.  Equality of bond-percolation critical exponents for pairs of dual lattices. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  William T. Tutte A Ring in Graph Theory , 1947 .

[19]  Svante Janson,et al.  Rainbow Hamilton cycles in random regular graphs , 2007, Random Struct. Algorithms.

[20]  Hanna D. Robalewska,et al.  1-Factorizations of random regular graphs , 1997, Random Struct. Algorithms.

[21]  Tomás Feder,et al.  Balanced matroids , 1992, STOC '92.

[22]  John C. Wierman Equality of the Bond Percolation Critical Exponents for Two Pairs of Dual Lattices , 1992, Comb. Probab. Comput..

[23]  Béla Bollobás,et al.  Percolation on dual lattices with k-fold symmetry , 2008 .