Asymptotics for mixed Dirichlet-Robin problems in irregular domains
暂无分享,去创建一个
[1] B. Sapoval,et al. Mathematical basis for a general theory of Laplacian transport towards irregular interfaces. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[2] Sapoval. General formulation of Laplacian transfer across irregular surfaces. , 1994, Physical review letters.
[3] John L. Lewis,et al. On the dimension of p-harmonic measure , 2005 .
[4] K. Nyström. Integrability of Green potentials in fractal domains , 1996 .
[5] K. Falconer. The geometry of fractal sets , 1985 .
[6] H. Kardestuncer,et al. Finite element handbook , 1987 .
[7] B. Sapoval,et al. Transfer across random versus deterministic fractal interfaces. , 2000, Physical review letters.
[8] U. Mosco. Convergence of convex sets and of solutions of variational inequalities , 1969 .
[9] Carlos E. Kenig,et al. Boundary behavior of harmonic functions in non-tangentially accessible domains , 1982 .
[10] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[11] H. Wallin. The trace to the boundary of Sobolev spaces on a snowflake , 1991 .
[12] Hans Triebel,et al. Fractals and Spectra: Related to Fourier Analysis and Function Spaces , 1997 .
[13] Jaak Peetre,et al. Function spaces on subsets of Rn , 1984 .
[14] Maria Rosaria Lancia,et al. A Transmission Problem with a Fractal Interface , 2002 .
[15] Luke G. Rogers. Degree-independent Sobolev extension on locally uniform domains , 2006 .
[16] Hans Wallin,et al. The dual of Besov spaces on fractals , 1995 .
[17] Peter W. Jones. Quasiconformal mappings and extendability of functions in sobolev spaces , 1981 .