Asymptotics for mixed Dirichlet-Robin problems in irregular domains

Abstract We study the asymptotic behaviour of the solutions of two-dimensional elliptic problems with Robin boundary conditions on the “prefractal” curves approximating the Koch curve type fractals.

[1]  B. Sapoval,et al.  Mathematical basis for a general theory of Laplacian transport towards irregular interfaces. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Sapoval General formulation of Laplacian transfer across irregular surfaces. , 1994, Physical review letters.

[3]  John L. Lewis,et al.  On the dimension of p-harmonic measure , 2005 .

[4]  K. Nyström Integrability of Green potentials in fractal domains , 1996 .

[5]  K. Falconer The geometry of fractal sets , 1985 .

[6]  H. Kardestuncer,et al.  Finite element handbook , 1987 .

[7]  B. Sapoval,et al.  Transfer across random versus deterministic fractal interfaces. , 2000, Physical review letters.

[8]  U. Mosco Convergence of convex sets and of solutions of variational inequalities , 1969 .

[9]  Carlos E. Kenig,et al.  Boundary behavior of harmonic functions in non-tangentially accessible domains , 1982 .

[10]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[11]  H. Wallin The trace to the boundary of Sobolev spaces on a snowflake , 1991 .

[12]  Hans Triebel,et al.  Fractals and Spectra: Related to Fourier Analysis and Function Spaces , 1997 .

[13]  Jaak Peetre,et al.  Function spaces on subsets of Rn , 1984 .

[14]  Maria Rosaria Lancia,et al.  A Transmission Problem with a Fractal Interface , 2002 .

[15]  Luke G. Rogers Degree-independent Sobolev extension on locally uniform domains , 2006 .

[16]  Hans Wallin,et al.  The dual of Besov spaces on fractals , 1995 .

[17]  Peter W. Jones Quasiconformal mappings and extendability of functions in sobolev spaces , 1981 .