Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics.

[1]  A. Orr,et al.  Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria. , 2013, Free radical biology & medicine.

[2]  R. deKemp,et al.  Mitochondrial uncoupling in skeletal muscle by UCP1 augments energy expenditure and glutathione content while mitigating ROS production. , 2013, American journal of physiology. Endocrinology and metabolism.

[3]  M. O. Landázuri,et al.  The transcription factor Nrf2 promotes survival by enhancing the expression of uncoupling protein 3 under conditions of oxidative stress. , 2013, Free radical biology & medicine.

[4]  L. MacMillan-Crow,et al.  Effect of S-nitrosoglutathione on renal mitochondrial function: a new mechanism for reversible regulation of manganese superoxide dismutase activity? , 2013, Free radical biology & medicine.

[5]  T. Dick,et al.  Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. , 2013, Nature chemical biology.

[6]  M. Harper,et al.  Glutaredoxin-2 Is Required to Control Proton Leak through Uncoupling Protein-3* , 2013, The Journal of Biological Chemistry.

[7]  M. Harper,et al.  Glutathionylation of UCP2 sensitizes drug resistant leukemia cells to chemotherapeutics. , 2013, Biochimica et biophysica acta.

[8]  A. Orr,et al.  A Refined Analysis of Superoxide Production by Mitochondrial sn-Glycerol 3-Phosphate Dehydrogenase* , 2012, The Journal of Biological Chemistry.

[9]  M. Wheeler,et al.  Glutathionylation State of Uncoupling Protein-2 and the Control of Glucose-stimulated Insulin Secretion* , 2012, The Journal of Biological Chemistry.

[10]  H. McBride,et al.  The intracellular redox state is a core determinant of mitochondrial fusion , 2012, EMBO reports.

[11]  A. Millar,et al.  The biological roles of glutaredoxins. , 2012, The Biochemical journal.

[12]  M. Harper,et al.  Mitochondrial proticity and ROS signaling: lessons from the uncoupling proteins , 2012, Trends in Endocrinology & Metabolism.

[13]  Yeong-Renn Chen,et al.  Protein thiyl radical mediates S-glutathionylation of complex I. , 2012, Free radical biology & medicine.

[14]  A. Al-Mehdi,et al.  Perinuclear Mitochondrial Clustering Creates an Oxidant-Rich Nuclear Domain Required for Hypoxia-Induced Transcription , 2012, Science Signaling.

[15]  R. Hamilton,et al.  Mouse Models of Oxidative Stress Indicate a Role for Modulating Healthy Aging. , 2012, Journal of clinical & experimental pathology.

[16]  A. Orr,et al.  Mitochondrial Complex II Can Generate Reactive Oxygen Species at High Rates in Both the Forward and Reverse Reactions* , 2012, The Journal of Biological Chemistry.

[17]  Joseph Loscalzo,et al.  Redox regulation of mitochondrial function. , 2012, Antioxidants & redox signaling.

[18]  L. Wojtczak,et al.  Brown adipose tissue mitochondria oxidizing fatty acids generate high levels of reactive oxygen species irrespective of the uncoupling protein-1 activity state. , 2012, Biochimica et biophysica acta.

[19]  H. M. Cochemé,et al.  Mitochondrial redox signalling at a glance , 2012, Journal of Cell Science.

[20]  M. Murphy,et al.  Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. , 2012, Antioxidants & redox signaling.

[21]  M. Harper,et al.  Crucial yet divergent roles of mitochondrial redox state in skeletal muscle vs. brown adipose tissue energetics , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[22]  P. Newsholme,et al.  Mitochondria and diabetes. An intriguing pathogenetic role. , 2012, Advances in experimental medicine and biology.

[23]  Laurent Vergnes,et al.  UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells , 2011, The EMBO journal.

[24]  F. Giblin,et al.  Glutaredoxin 2 knockout increases sensitivity to oxidative stress in mouse lens epithelial cells. , 2011, Free radical biology & medicine.

[25]  A. Kjær,et al.  FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function , 2011, The EMBO journal.

[26]  J. Eisenbart,et al.  Mitochondrial complex III ROS regulate adipocyte differentiation. , 2011, Cell metabolism.

[27]  E. Murphy,et al.  Cysteine 203 of Cyclophilin D Is Critical for Cyclophilin D Activation of the Mitochondrial Permeability Transition Pore* , 2011, The Journal of Biological Chemistry.

[28]  M. Harper,et al.  Uncoupling proteins and the control of mitochondrial reactive oxygen species production. , 2011, Free radical biology & medicine.

[29]  Goedele Roos,et al.  Protein sulfenic acid formation: from cellular damage to redox regulation. , 2011, Free radical biology & medicine.

[30]  R. deKemp,et al.  Hexokinase II acts through UCP3 to suppress mitochondrial reactive oxygen species production and maintain aerobic respiration. , 2011, The Biochemical journal.

[31]  T. Finkel,et al.  Signal transduction by reactive oxygen species , 2011, The Journal of cell biology.

[32]  Ajit S. Divakaruni,et al.  The regulation and physiology of mitochondrial proton leak. , 2011, Physiology.

[33]  T. Kieselbach,et al.  The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance. , 2011, Antioxidants & redox signaling.

[34]  W. Qi,et al.  Mechanism of glutaredoxin-ISU [2Fe-2S] cluster exchange. , 2011, Chemical communications.

[35]  S. Collins,et al.  Glutathionylation Acts as a Control Switch for Uncoupling Proteins UCP2 and UCP3* , 2011, The Journal of Biological Chemistry.

[36]  Amir Karton,et al.  Model for the Exceptional Reactivity of Peroxiredoxins 2 and 3 with Hydrogen Peroxide , 2011, The Journal of Biological Chemistry.

[37]  E. Cadenas,et al.  Regulation of Mitochondrial Glutathione Redox Status and Protein Glutathionylation by Respiratory Substrates* , 2010, The Journal of Biological Chemistry.

[38]  M. Lou,et al.  Glutaredoxin 2 prevents H(2)O(2)-induced cell apoptosis by protecting complex I activity in the mitochondria. , 2010, Biochimica et biophysica acta.

[39]  S. Cadenas,et al.  GDP and carboxyatractylate inhibit 4-hydroxynonenal-activated proton conductance to differing degrees in mitochondria from skeletal muscle and heart. , 2010, Biochimica et biophysica acta.

[40]  E. Bertini,et al.  GSSG-mediated Complex I defect in isolated cardiac mitochondria. , 2010, International journal of molecular medicine.

[41]  M. Brand,et al.  The on-off switches of the mitochondrial uncoupling proteins. , 2010, Trends in biochemical sciences.

[42]  H. Vieira,et al.  Glutathionylation of Adenine Nucleotide Translocase Induced by Carbon Monoxide Prevents Mitochondrial Membrane Permeabilization and Apoptosis* , 2010, The Journal of Biological Chemistry.

[43]  Tak Yee Aw,et al.  Reactive oxygen species, cellular redox systems, and apoptosis. , 2010, Free radical biology & medicine.

[44]  Jun Chen,et al.  Ethyl pyruvate protects against hypoxic-ischemic brain injury via anti-cell death and anti-inflammatory mechanisms , 2010, Neurobiology of Disease.

[45]  C. Winterbourn,et al.  Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. , 2010, The Biochemical journal.

[46]  E. Bertini,et al.  Friedreich's ataxia: Oxidative stress and cytoskeletal abnormalities , 2009, Journal of the Neurological Sciences.

[47]  A. Colell,et al.  Mitochondrial glutathione, a key survival antioxidant. , 2009, Antioxidants & redox signaling.

[48]  Atsushi Fukushima,et al.  Reactive oxygen species enhance insulin sensitivity. , 2009, Cell metabolism.

[49]  B. Freeman,et al.  Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning: implications for cardioprotection. , 2009, Cardiovascular research.

[50]  M. Gallogly,et al.  Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. , 2009, Antioxidants & redox signaling.

[51]  S. Rhee,et al.  Sulfiredoxin Translocation into Mitochondria Plays a Crucial Role in Reducing Hyperoxidized Peroxiredoxin III* , 2009, Journal of Biological Chemistry.

[52]  Ye Xiong,et al.  Attenuation of doxorubicin-induced cardiac injury by mitochondrial glutaredoxin 2. , 2009, Biochimica et biophysica acta.

[53]  Michael P. Murphy,et al.  How mitochondria produce reactive oxygen species , 2008, The Biochemical journal.

[54]  M. Gallogly,et al.  Kinetic and mechanistic characterization and versatile catalytic properties of mammalian glutaredoxin 2: implications for intracellular roles. , 2008, Biochemistry.

[55]  T. Hurd,et al.  Complex I within Oxidatively Stressed Bovine Heart Mitochondria Is Glutathionylated on Cys-531 and Cys-704 of the 75-kDa Subunit , 2008, Journal of Biological Chemistry.

[56]  Catherine B. Chan,et al.  UCP2 is highly expressed in pancreatic α-cells and influences secretion and survival , 2008, Proceedings of the National Academy of Sciences.

[57]  Tamas L. Horvath,et al.  UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals , 2008, Nature.

[58]  B. Freeman,et al.  Nitro-fatty Acid Formation and Signaling* , 2008, Journal of Biological Chemistry.

[59]  Andreas J Meyer,et al.  Real-time imaging of the intracellular glutathione redox potential , 2008, Nature Methods.

[60]  M. Brand,et al.  High membrane potential promotes alkenal-induced mitochondrial uncoupling and influences adenine nucleotide translocase conformation , 2008, The Biochemical journal.

[61]  Dean P. Jones,et al.  Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. , 2008, Free radical biology & medicine.

[62]  L. Szweda,et al.  Reversible inhibition of alpha-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid. , 2008, Biochemistry.

[63]  M. Brand,et al.  Uncoupling protein-2 contributes significantly to high mitochondrial proton leak in INS-1E insulinoma cells and attenuates glucose-stimulated insulin secretion. , 2008, The Biochemical journal.

[64]  J. Zweier,et al.  Mitochondrial Complex II in the Post-ischemic Heart , 2007, Journal of Biological Chemistry.

[65]  M. Trujillo,et al.  Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation. , 2007, Archives of biochemistry and biophysics.

[66]  Hanae Yamazaki,et al.  Induction of Endogenous Uncoupling Protein 3 Suppresses Mitochondrial Oxidant Emission during Fatty Acid-supported Respiration* , 2007, Journal of Biological Chemistry.

[67]  D. Giustarini,et al.  S-glutathionylation in protein redox regulation. , 2007, Free radical biology & medicine.

[68]  M. Gallogly,et al.  Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. , 2007, Current opinion in pharmacology.

[69]  V. Appanna,et al.  The Tricarboxylic Acid Cycle, an Ancient Metabolic Network with a Novel Twist , 2007, PloS one.

[70]  J. Eisenbart,et al.  Jcb: Article , 2022 .

[71]  S. North,et al.  Hypoxia-inducible Factor-1α, a Key Factor in the Keratinocyte Response to UVB Exposure* , 2007, Journal of Biological Chemistry.

[72]  Oliver Holub,et al.  Mitochondrial Creatine Kinase Activity Prevents Reactive Oxygen Species Generation , 2006, Journal of Biological Chemistry.

[73]  C. Chinopoulos,et al.  Bioenergetics and the formation of mitochondrial reactive oxygen species. , 2006, Trends in pharmacological sciences.

[74]  M. Gomez-Lazaro,et al.  Pyruvate protects cerebellar granular cells from 6-hydroxydopamine-induced cytotoxicity by activating the Akt signaling pathway and increasing glutathione peroxidase expression , 2006, Neurobiology of Disease.

[75]  A. P. Sokolov,et al.  Nonezymatic formation of succinate in mitochondria under oxidative stress. , 2006, Free radical biology & medicine.

[76]  C. Koehler,et al.  Redox pathways of the mitochondrion. , 2006, Antioxidants & redox signaling.

[77]  P. Mladěnka,et al.  The role of reactive oxygen and nitrogen species in cellular iron metabolism , 2006, Free radical research.

[78]  D. Wallace,et al.  The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. , 2005, The Biochemical journal.

[79]  E. Cadenas,et al.  Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione. , 2005, Biochemistry.

[80]  M. Brand,et al.  Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. , 2005, Cell metabolism.

[81]  S. Minucci,et al.  Electron Transfer between Cytochrome c and p66Shc Generates Reactive Oxygen Species that Trigger Mitochondrial Apoptosis , 2005, Cell.

[82]  T. Hurd,et al.  Glutathionylation of mitochondrial proteins. , 2005, Antioxidants & redox signaling.

[83]  A. Holmgren,et al.  Characterization of human glutaredoxin 2 as iron-sulfur protein: a possible role as redox sensor. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[84]  In Sup Kil,et al.  Regulation of Mitochondrial NADP+-dependent Isocitrate Dehydrogenase Activity by Glutathionylation* , 2005, Journal of Biological Chemistry.

[85]  Robert S. Balaban,et al.  Mitochondria, Oxidants, and Aging , 2005, Cell.

[86]  E. R. Taylor,et al.  Glutaredoxin 2 Catalyzes the Reversible Oxidation and Glutathionylation of Mitochondrial Membrane Thiol Proteins , 2004, Journal of Biological Chemistry.

[87]  R. Moreno-Sánchez,et al.  Mitochondrial Bound Hexokinase Activity as a Preventive Antioxidant Defense , 2004, Journal of Biological Chemistry.

[88]  L. Tretter,et al.  Generation of Reactive Oxygen Species in the Reaction Catalyzed by α-Ketoglutarate Dehydrogenase , 2004, The Journal of Neuroscience.

[89]  P. Kiberstis Mitochondria and Diabetes , 2004, Science.

[90]  S. Javadov,et al.  Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection. , 2004, Cardiovascular research.

[91]  C. Elger,et al.  Characterization of Superoxide-producing Sites in Isolated Brain Mitochondria* , 2004, Journal of Biological Chemistry.

[92]  A. J. Lambert,et al.  A signalling role for 4‐hydroxy‐2‐nonenal in regulation of mitochondrial uncoupling , 2003, The EMBO journal.

[93]  J. Vandekerckhove,et al.  Identification of proteins undergoing glutathionylation in oxidatively stressed hepatocytes and hepatoma cells , 2003, Proteomics.

[94]  E. R. Taylor,et al.  Reversible Glutathionylation of Complex I Increases Mitochondrial Superoxide Formation* , 2003, Journal of Biological Chemistry.

[95]  P. Karplus,et al.  Peroxiredoxin Evolution and the Regulation of Hydrogen Peroxide Signaling , 2003, Science.

[96]  A. Murphy,et al.  Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. , 2002, The Biochemical journal.

[97]  M. Brand,et al.  Topology of Superoxide Production from Different Sites in the Mitochondrial Electron Transport Chain* , 2002, The Journal of Biological Chemistry.

[98]  L. Packer,et al.  Antioxidant and prooxidant activities of alpha-lipoic acid and dihydrolipoic acid. , 2002, Toxicology and applied pharmacology.

[99]  P. Ghezzi,et al.  Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[100]  J. Stuart,et al.  Superoxide activates mitochondrial uncoupling proteins , 2002, Nature.

[101]  X. Lei,et al.  Knockout of cellular glutathione peroxidase gene renders mice susceptible to diquat-induced oxidative stress. , 1999, Free radical biology & medicine.

[102]  M. Brand,et al.  Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR. , 1999, American journal of physiology. Cell physiology.

[103]  J. Glowinski,et al.  Pyruvate Protects Neurons against Hydrogen Peroxide-Induced Toxicity , 1997, The Journal of Neuroscience.

[104]  V. Skulachev,et al.  High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria , 1997, FEBS letters.

[105]  A. Nègre-Salvayre,et al.  A role for uncoupling protein‐2 as a regulator of mitochondrial hydrogen peroxide generation , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[106]  R. Radi,et al.  Peroxynitrite-mediated decarboxylation of pyruvate to both carbon dioxide and carbon dioxide radical anion. , 1997, Chemical research in toxicology.

[107]  O. Boss,et al.  Uncoupling protein‐3: a new member of the mitochondrial carrier family with tissue‐specific expression , 1997, FEBS letters.

[108]  Hitoshi Yamashita,et al.  Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese , 1997, nature.

[109]  N. Kaplowitz,et al.  Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-kappa B: studies with isolated mitochondria and rat hepatocytes. , 1995, Molecular pharmacology.

[110]  D. Flint,et al.  The inactivation of Fe-S cluster containing hydro-lyases by superoxide. , 1993, The Journal of biological chemistry.

[111]  B. Halliwell,et al.  Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Is haemoglobin a biological Fenton reagent? , 1988, The Biochemical journal.

[112]  B. Halliwell,et al.  Oxygen toxicity, oxygen radicals, transition metals and disease. , 1984, The Biochemical journal.

[113]  J. Turrens,et al.  Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. , 1980, The Biochemical journal.

[114]  H. Forman,et al.  Dihydroorotate-dependent superoxide production in rat brain and liver. A function of the primary dehydrogenase. , 1976, Archives of biochemistry and biophysics.