On the issue that Finite Element discretizations violate, nodally, Clausius’s postulate of the second law of thermodynamics
暂无分享,去创建一个
[1] Richard S. Varga,et al. On a Discrete Maximum Principle , 1966 .
[2] Eugenio Oñate,et al. Petrov-Galerkin methods for the transient advective-diffusive equation with sharp gradients , 1996 .
[3] T. Kaczorek. Positive 1D and 2D Systems , 2001 .
[4] Róbert Horváth,et al. Discrete maximum principle for linear parabolic problems solved on hybrid meshes , 2005 .
[5] R. Clausius. The Mechanical Theory Of Heat , 1879 .
[6] Pierre Ladevèze,et al. Local error estimators for finite element linear analysis , 1999 .
[7] Sergey Korotov,et al. Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle , 2001, Math. Comput..
[8] R. Clausius,et al. X. On a modified form of the second fundamental theorem in the mechanical theory of heat , 1856 .
[9] S. Idelsohn,et al. Objectivity tests for Navier–Stokes simulations: The revealing of non-physical solutions produced by Laplace formulations , 2008 .
[10] Vidar Thomée,et al. On the existence of maximum principles in parabolic finite element equations , 2008, Math. Comput..
[11] Roland W. Lewis,et al. A comparison of time marching schemes for the transient heat conduction equation , 1975 .
[12] Ernst Rank,et al. On the importance of the discrete maximum principle in transient analysis using finite element methods , 1983 .
[13] Mats G. Larson,et al. The Finite Element , 2013 .
[14] A. Brandt. Generalized Local Maximum Principles for Finite-Difference Operators , 1973 .
[15] Siegfried Selberherr,et al. On the interplay between meshing and discretization inthree-dimensional diffusion simulation , 2000, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[16] G. Rota. Non-negative matrices in the mathematical sciences: A. Berman and R. J. Plemmons, Academic Press, 1979, 316 pp. , 1983 .
[17] Jean-Michel Bergheau,et al. Finite Element Simulation of Heat Transfer , 2008 .
[18] Sophia Blau,et al. Analysis Of The Finite Element Method , 2016 .
[19] Antti Hannukainen,et al. Discrete maximum principle for parabolic problems solved by prismatic finite elements , 2010, Math. Comput. Simul..
[20] H. Schönheinz. G. Strang / G. J. Fix, An Analysis of the Finite Element Method. (Series in Automatic Computation. XIV + 306 S. m. Fig. Englewood Clifs, N. J. 1973. Prentice‐Hall, Inc. , 1975 .
[21] K. Bathe. Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme , 2007 .
[22] Enrico Bertolazzi,et al. A Second-Order Maximum Principle Preserving Finite Volume Method for Steady Convection-Diffusion Problems , 2005, SIAM J. Numer. Anal..
[23] Mario A. Storti,et al. A Petrov-Galerkin formulation for advection-reaction-diffusion problems , 1996 .
[24] Mario Putti,et al. Accuracy of Galerkin finite elements for groundwater flow simulations in two and three‐dimensional triangulations , 2001 .
[25] Long Chen. FINITE ELEMENT METHOD , 2013 .
[26] Eugene Seneta,et al. Non‐Negative Matrices , 1975 .
[27] Pierre Ladevèze,et al. Application of a posteriori error estimation for structural model updating , 1999 .
[28] P. G. Ciarlet,et al. Maximum principle and uniform convergence for the finite element method , 1973 .