tRNA modifications: insights into their role in human cancers.

[1]  Shourya S. Roy Burman,et al.  Structural basis of regulated m^7G tRNA modification by METTL1–WDR4 , 2023, Nature.

[2]  Y. Nam,et al.  Structures and mechanisms of tRNA methylation by METTL1–WDR4 , 2023, Nature.

[3]  E. Kotsiliti Targeting hyperactive tRNA modification improves anti-PD1 efficacy , 2022, Nature reviews. Gastroenterology & hepatology.

[4]  Lixia Xu,et al.  Targeting tumour-intrinsic N7-methylguanosine tRNA modification inhibits MDSC recruitment and improves anti-PD-1 efficacy , 2022, Gut.

[5]  R. Flavell,et al.  tRNA-m1A modification promotes T cell expansion via efficient MYC protein synthesis , 2022, Nature Immunology.

[6]  Lixia Xu,et al.  METTL1-mediated m7G tRNA modification promotes lenvatinib resistance in hepatocellular carcinoma. , 2022, Cancer research.

[7]  L. Nguyen,et al.  Elp3‐mediated codon‐dependent translation promotes mTORC2 activation and regulates macrophage polarization , 2022, The EMBO journal.

[8]  Lixia Xu,et al.  Targeting N7-Methylguanosine tRNA modification blocks hepatocellular carcinoma metastasis after insufficient radiofrequency ablation. , 2022, Molecular therapy : the journal of the American Society of Gene Therapy.

[9]  A. Dutta,et al.  Characterization of novel small non-coding RNAs and their modifications in bladder cancer using an updated small RNA-seq workflow , 2022, Frontiers in molecular biosciences.

[10]  Hongyuan Chen,et al.  Identification of nucleoside monophosphates and their epigenetic modifications using an engineered nanopore , 2022, Nature Nanotechnology.

[11]  S. Dietmann,et al.  Mitochondrial RNA modifications shape metabolic plasticity in metastasis , 2022, Nature.

[12]  S. Peng,et al.  Methyltransferase 1 is required for nonhomologous end‐joining repair and renders hepatocellular carcinoma resistant to radiotherapy , 2022, Hepatology.

[13]  Shuibin Lin,et al.  Eliminating METTL1‐mediated accumulation of PMN‐MDSCs prevents hepatocellular carcinoma recurrence after radiofrequency ablation , 2022, Hepatology.

[14]  Shuibin Lin,et al.  N7-methylguanosine (m7G) tRNA modification: a novel autophagy modulator in cancer , 2022, Autophagy.

[15]  Fengbin Wang,et al.  TRMT6/61A-dependent base methylation of tRNA-derived fragments regulates gene-silencing activity and the unfolded protein response in bladder cancer , 2022, Nature Communications.

[16]  Qi Cui,et al.  Decoding pseudouridine: an emerging target for therapeutic development. , 2022, Trends in pharmacological sciences.

[17]  Jianye Xu,et al.  A Comprehensive Analysis of METTL1 to Immunity and Stemness in Pan-Cancer , 2022, Frontiers in Immunology.

[18]  Shuibin Lin,et al.  N7-methylguanosine tRNA modification promotes esophageal squamous cell carcinoma tumorigenesis via the RPTOR/ULK1/autophagy axis , 2022, Nature Communications.

[19]  M. Bohnsack,et al.  Roles and dynamics of 3-methylcytidine in cellular RNAs. , 2022, Trends in biochemical sciences.

[20]  M. Cazzola,et al.  Pseudouridine-modified tRNA fragments repress aberrant protein synthesis and predict leukaemic progression in myelodysplastic syndrome , 2022, Nature Cell Biology.

[21]  YU Peng,et al.  N7-methylguanosine tRNA modification promotes tumorigenesis and chemoresistance through WNT/β-catenin pathway in nasopharyngeal carcinoma , 2022, Oncogene.

[22]  Jie Chen,et al.  Aberrant translation regulated by METTL1/WDR4‐mediated tRNA N7‐methylguanosine modification drives head and neck squamous cell carcinoma progression , 2022, Cancer communications.

[23]  Marleen Heinrichs,et al.  The RNA methyltransferase METTL8 installs m3C32 in mitochondrial tRNAsThr/Ser(UCN) to optimise tRNA structure and mitochondrial translation , 2022, Nature communications.

[24]  S. Shiina,et al.  Downregulation of METTL6 mitigates cell progression, migration, invasion and adhesion in hepatocellular carcinoma by inhibiting cell adhesion molecules , 2021, International journal of oncology.

[25]  W. Ji,et al.  METTL1‐m7G‐EGFR/EFEMP1 axis promotes the bladder cancer development , 2021, Clinical and translational medicine.

[26]  Shuibin Lin,et al.  METTL1 promotes hepatocarcinogenesis via m7G tRNA modification‐dependent translation control , 2021, Clinical and translational medicine.

[27]  Lei He,et al.  N1-methyladenosine methylation in tRNA drives liver tumourigenesis by regulating cholesterol metabolism , 2021, Nature Communications.

[28]  P. Oefner,et al.  Balancing of mitochondrial translation through METTL8-mediated m3C modification of mitochondrial tRNAs. , 2021, Molecular cell.

[29]  S. Lehmann,et al.  Quantifying RNA modifications by mass spectrometry: a novel source of biomarkers in oncology , 2021, Critical reviews in clinical laboratory sciences.

[30]  Qi Cui,et al.  Targeting PUS7 suppresses tRNA pseudouridylation and glioblastoma tumorigenesis , 2021, Nature Cancer.

[31]  Shuibin Lin,et al.  METTL1/WDR4 mediated m7G tRNA modifications and m7G codon usage promote mRNA translation and lung cancer progression. , 2021, Molecular therapy : the journal of the American Society of Gene Therapy.

[32]  F. Slack,et al.  METTL1-mediated m7G modification of Arg-TCT tRNA drives oncogenic transformation. , 2021, Molecular cell.

[33]  Lixia Xu,et al.  N7-Methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. , 2021, Molecular cell.

[34]  Hugh E. Olsen,et al.  Direct Nanopore Sequencing of Individual Full Length tRNA Strands , 2021, bioRxiv.

[35]  Tsutomu Suzuki The expanding world of tRNA modifications and their disease relevance , 2021, Nature Reviews Molecular Cell Biology.

[36]  Andrew Behrens,et al.  High-resolution quantitative profiling of tRNA abundance and modification status in eukaryotes by mim-tRNAseq , 2021, Molecular cell.

[37]  L. Nguyen,et al.  Loss of tRNA-modifying enzyme Elp3 activates a p53-dependent antitumor checkpoint in hematopoiesis , 2021, The Journal of experimental medicine.

[38]  Xu Han,et al.  Circulating tRNA-derived small RNAs (tsRNAs) signature for the diagnosis and prognosis of breast cancer , 2021, NPJ breast cancer.

[39]  OUP accepted manuscript , 2021, Nucleic Acids Research.

[40]  R. Gregory,et al.  Nucleotide resolution profiling of m3C RNA modification by HAC-seq , 2020, Nucleic acids research.

[41]  Yun-Gui Yang,et al.  RNA methylations in human cancers. , 2020, Seminars in cancer biology.

[42]  Tsutomu Suzuki,et al.  The tRNA pseudouridine synthase TruB1 regulates the maturation of let‐7 miRNA , 2020, The EMBO journal.

[43]  T. Kouzarides,et al.  Role of RNA modifications in cancer , 2020, Nature Reviews Cancer.

[44]  Jinghui Song,et al.  Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation , 2019, Nature Chemical Biology.

[45]  Hui Shen,et al.  Genome-wide CRISPR screen identifies ELP5 as a determinant of gemcitabine sensitivity in gallbladder cancer , 2019, Nature Communications.

[46]  R. Gregory,et al.  Nucleotide resolution profiling of m7G tRNA modification by TRAC-Seq , 2019, Nature Protocols.

[47]  Jun Chen,et al.  METTL1 overexpression is correlated with poor prognosis and promotes hepatocellular carcinoma via PTEN , 2019, Journal of Molecular Medicine.

[48]  Dan Sun,et al.  Exosomal tRNA-derived small RNA as a promising biomarker for cancer diagnosis , 2019, Molecular Cancer.

[49]  Zhike Lu,et al.  Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs , 2018, Nucleic acids research.

[50]  Yuri Motorin,et al.  AlkAniline-Seq: Profiling of m7 G and m3 C RNA Modifications at Single Nucleotide Resolution. , 2018, Angewandte Chemie.

[51]  Michaela Frye,et al.  RNA modifications modulate gene expression during development , 2018, Science.

[52]  Sebastian A. Leidel,et al.  Codon-specific translation reprogramming promotes resistance to targeted therapy , 2018, Nature.

[53]  Jenny Hansson,et al.  Pseudouridylation of tRNA-Derived Fragments Steers Translational Control in Stem Cells , 2018, Cell.

[54]  Chengqi Yi,et al.  Base-Resolution Mapping Reveals Distinct m1A Methylome in Nuclear- and Mitochondrial-Encoded Transcripts. , 2017, Molecular cell.

[55]  Schraga Schwartz,et al.  The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution , 2017, Nature.

[56]  A. Hsieh,et al.  Reciprocal amplification of caspase-3 activity by nuclear export of a putative human RNA-modifying protein, PUS10 during TRAIL-induced apoptosis , 2017, Cell Death and Disease.

[57]  A. Chariot,et al.  tRNA Modification: Is Cancer Having a Wobble? , 2017, Trends in cancer.

[58]  C. Tisné,et al.  m1A Post-Transcriptional Modification in tRNAs , 2017, Biomolecules.

[59]  Arne Klungland,et al.  ALKBH1-Mediated tRNA Demethylation Regulates Translation , 2016, Cell.

[60]  Sebastian A. Leidel,et al.  Elp3 links tRNA modification to IRES-dependent translation of LEF1 to sustain metastasis in breast cancer , 2016, The Journal of experimental medicine.

[61]  M. Rodnina,et al.  NSUN3 and ABH1 modify the wobble position of mt‐tRNA Met to expand codon recognition in mitochondrial translation , 2016, The EMBO journal.

[62]  S. Zhai,et al.  tRNA modification profiles of the fast-proliferating cancer cells. , 2016, Biochemical and biophysical research communications.

[63]  Michaela Frye,et al.  Stem cell function and stress response are controlled by protein synthesis , 2016, Nature.

[64]  A. Byström,et al.  TRM6/61 connects PKCα with translational control through tRNAiMet stabilization: impact on tumorigenesis , 2016, Oncogene.

[65]  Gideon Rechavi,et al.  The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA , 2016, Nature.

[66]  R. Stroud,et al.  Crystal Structure of the Human tRNA m(1)A58 Methyltransferase-tRNA(3)(Lys) Complex: Refolding of Substrate tRNA Allows Access to the Methylation Target. , 2015, Journal of molecular biology.

[67]  L. Nguyen,et al.  Elp3 drives Wnt-dependent tumor initiation and regeneration in the intestine , 2015, The Journal of experimental medicine.

[68]  Todd M. Lowe,et al.  ARM-Seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments , 2015, Nature Methods.

[69]  Chengqi Yi,et al.  Efficient and quantitative high-throughput transfer RNA sequencing , 2015, Nature Methods.

[70]  Li-Rong Zhang,et al.  Expression and significance of m1A transmethylase, hTrm6p/hTrm61p and its related gene hTrm6/hTrm61 in bladder urothelial carcinoma. , 2015, American journal of cancer research.

[71]  M. Tatsuka,et al.  tRNA Modifying Enzymes, NSUN2 and METTL1, Determine Sensitivity to 5-Fluorouracil in HeLa Cells , 2014, PLoS Genetics.

[72]  Maxwell R. Mumbach,et al.  Transcriptome-wide Mapping Reveals Widespread Dynamic-Regulated Pseudouridylation of ncRNA and mRNA , 2014, Cell.

[73]  W. Gilbert,et al.  Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells , 2014, Nature.

[74]  Michael L. Gatza,et al.  An integrated genomics approach identifies drivers of proliferation in luminal subtype human breast cancer , 2014, Nature Genetics.

[75]  Jernej Ule,et al.  Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders , 2014, The EMBO journal.

[76]  Clement T Y Chan,et al.  A Quantitative Systems Approach Reveals Dynamic Control of tRNA Modifications during Cellular Stress , 2010, PLoS genetics.

[77]  Francesca Tuorto,et al.  RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. , 2010, Genes & development.

[78]  Frank Lyko,et al.  RNA cytosine methylation analysis by bisulfite sequencing , 2008, Nucleic acids research.

[79]  O. Herbarth,et al.  Modified nucleosides: an accurate tumour marker for clinical diagnosis of cancer, early detection and therapy control , 2006, British Journal of Cancer.

[80]  Weifeng Gu,et al.  Rapid tRNA decay can result from lack of nonessential modifications. , 2006, Molecular cell.

[81]  Alan G Hinnebusch,et al.  Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. , 2004, Genes & development.

[82]  P. Agris,et al.  Naturally-occurring modification restricts the anticodon domain conformational space of tRNA(Phe). , 2003, Journal of molecular biology.

[83]  P. Agris,et al.  Functional anticodon architecture of human tRNALys3 includes disruption of intraloop hydrogen bonding by the naturally occurring amino acid modification, t6A. , 2000, Biochemistry.

[84]  P. Sigler,et al.  The 3 A crystal structure of yeast initiator tRNA: functional implications in initiator/elongator discrimination. , 1991, The EMBO journal.

[85]  A. Byström,et al.  Prevention of translational frameshifting by the modified nucleoside 1-methylguanosine. , 1989, Science.

[86]  D. B. Dunn,et al.  The occurrence of 1-methyladenine in ribonucleic acid. , 1961, Biochimica et biophysica acta.