Sensitivity Analysis of a Bayesian Network

[1]  Max Henrion,et al.  Propagating uncertainty in bayesian networks by probabilistic logic sampling , 1986, UAI.

[2]  Zhen Hu,et al.  Mixed Efficient Global Optimization for Time-Dependent Reliability Analysis , 2015 .

[3]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[4]  Sankaran Mahadevan,et al.  Separating the contributions of variability and parameter uncertainty in probability distributions , 2013, Reliab. Eng. Syst. Saf..

[5]  Mahesh D. Pandey,et al.  An effective approximation for variance-based global sensitivity analysis , 2014, Reliab. Eng. Syst. Saf..

[6]  Art B. Owen,et al.  Better estimation of small sobol' sensitivity indices , 2012, TOMC.

[7]  Sankaran Mahadevan,et al.  Uncertainty quantification and model validation of fatigue crack growth prediction , 2011 .

[8]  Thomas L. Paez,et al.  Sandia National Laboratories Validation Workshop: Structural dynamics application☆ , 2008 .

[9]  Sankaran Mahadevan,et al.  Uncertainty Quantification and Output Prediction in Multi-level Problems , 2014 .

[10]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[11]  John E. Angus,et al.  The Probability Integral Transform and Related Results , 1994, SIAM Rev..

[12]  Sankaran Mahadevan,et al.  Role of calibration, validation, and relevance in multi-level uncertainty integration , 2016, Reliab. Eng. Syst. Saf..

[13]  Olivier Roustant,et al.  Calculations of Sobol indices for the Gaussian process metamodel , 2008, Reliab. Eng. Syst. Saf..

[14]  David Poole,et al.  Probabilistic Horn Abduction and Bayesian Networks , 1993, Artif. Intell..

[15]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[16]  Sankaran Mahadevan,et al.  Global Sensitivity Analysis for System Response Prediction Using Auxiliary Variable Method , 2015 .

[17]  Robert Veroff,et al.  A Bayesian Network Classification Methodology for Gene Expression Data , 2004, J. Comput. Biol..

[18]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[19]  Sankaran Mahadevan,et al.  Integration of structural health monitoring and fatigue damage prognosis , 2012 .

[20]  Sankaran Mahadevan,et al.  A non-parametric method to determine basic probability assignment for classification problems , 2014, Applied Intelligence.

[21]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[22]  Kevin B. Korb,et al.  Bayesian Artificial Intelligence , 2004, Computer science and data analysis series.

[23]  Sankaran Mahadevan,et al.  Probabilistic Integration of Validation and Calibration Results for Prediction Level Uncertainty Quantification: Application to Structural Dynamics , 2013 .

[24]  Ross D. Shachter Evaluating Influence Diagrams , 1986, Oper. Res..

[25]  Wei Chen,et al.  Application of conservative surrogate to reliability based vehicle design for crashworthiness , 2013 .

[26]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[27]  A. Saltelli,et al.  On the Relative Importance of Input Factors in Mathematical Models , 2002 .

[28]  Wei Chen,et al.  Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty , 2005 .

[29]  Sankaran Mahadevan,et al.  An efficient modularized sample-based method to estimate the first-order Sobol' index , 2016, Reliab. Eng. Syst. Saf..

[30]  Sankaran Mahadevan,et al.  Robust Test Resource Allocation using Global Sensitivity Analysis , 2016 .

[31]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[32]  Sankaran Mahadevan,et al.  Relative contributions of aleatory and epistemic uncertainty sources in time series prediction , 2016 .

[33]  E. E. Myshetskaya,et al.  Monte Carlo estimators for small sensitivity indices , 2008, Monte Carlo Methods Appl..

[34]  Sankaran Mahadevan,et al.  Uncertainty quantification in performance evaluation of manufacturing processes , 2014, 2014 IEEE International Conference on Big Data (Big Data).