An adaptive staggered-tilted grid for incompressible flow simulation

Enabling adaptivity on a uniform Cartesian grid is challenging due to its highly structured grid cells and axis-aligned grid lines. In this paper, we propose a new grid structure - the adaptive staggered-tilted (AST) grid - to conduct adaptive fluid simulations on a regular discretization. The key mechanics underpinning our new grid structure is to allow the emergence of a new set of tilted grid cells from the nodal positions on a background uniform grid. The original axis-aligned cells, in conjunction with the populated axis-tilted cells, jointly function as the geometric primitives to enable adaptivity on a regular spatial discretization. By controlling the states of the tilted cells both temporally and spatially, we can dynamically evolve the adaptive discretizations on an Eulerian domain. Our grid structure preserves almost all the computational merits of a uniform Cartesian grid, including the cache-coherent data layout, the easiness for parallelization, and the existence of high-performance numerical solvers. Further, our grid structure can be integrated into other adaptive grid structures, such as an Octree or a sparsely populated grid, to accommodate the T-junction-free hierarchy. We demonstrate the efficacy of our AST grid by showing examples of large-scale incompressible flow simulation in domains with irregular boundaries.

[1]  Frédo Durand,et al.  Taichi , 2019, ACM Trans. Graph..

[2]  Li-Tien Cheng,et al.  A second-order-accurate symmetric discretization of the Poisson equation on irregular domains , 2002 .

[3]  Ronald Fedkiw,et al.  A new grid structure for domain extension , 2013, ACM Trans. Graph..

[4]  Olivier Roussel,et al.  A conservative fully adaptive multiresolution algorithm for parabolic PDEs , 2003 .

[5]  Ken Museth,et al.  Hierarchical RLE level set: A compact and versatile deformable surface representation , 2006, TOGS.

[6]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, ACM Trans. Graph..

[7]  BattyChristopher,et al.  Hierarchical RLE level set , 2006 .

[8]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[9]  Christopher Batty,et al.  A practical octree liquid simulator with adaptive surface resolution , 2020, ACM Trans. Graph..

[10]  Yang Liu,et al.  A new time-space domain high-order finite-difference method for the acoustic wave equation , 2009, J. Comput. Phys..

[11]  Mridul Aanjaneya,et al.  An adaptive variational finite difference framework for efficient symmetric octree viscosity , 2019, ACM Trans. Graph..

[12]  James F. O'Brien,et al.  Eurographics/acm Siggraph Symposium on Computer Animation (2007) Liquid Simulation on Lattice-based Tetrahedral Meshes , 2022 .

[13]  Ronald Fedkiw,et al.  Codimensional non-Newtonian fluids , 2015, ACM Trans. Graph..

[14]  R. Bridson,et al.  Matching fluid simulation elements to surface geometry and topology , 2010, ACM Trans. Graph..

[15]  Greg Turk,et al.  Fast viscoelastic behavior with thin features , 2008, ACM Trans. Graph..

[16]  Ronald Fedkiw,et al.  Chimera grids for water simulation , 2013, SCA '13.

[17]  Ronald Fedkiw,et al.  Adaptive physics based tetrahedral mesh generation using level sets , 2005, Engineering with Computers.

[18]  Christopher Batty,et al.  Tetrahedral Embedded Boundary Methods for Accurate and Flexible Adaptive Fluids , 2010, Comput. Graph. Forum.

[19]  S. Shapiro,et al.  Modeling the propagation of elastic waves using a modified finite-difference grid , 2000 .

[20]  Aimin Hao,et al.  Fluid Simulation with Adaptive Staggered Power Particles on GPUs , 2020, IEEE Transactions on Visualization and Computer Graphics.

[21]  Robert Bridson,et al.  Spatially adaptive FLIP fluid simulations in bifrost , 2016, SIGGRAPH Talks.

[22]  Eftychios Sifakis,et al.  Narrow-band topology optimization on a sparsely populated grid , 2018, ACM Trans. Graph..

[23]  Michael G. Edwards,et al.  A quasi-positive family of continuous Darcy-flux finite-volume schemes with full pressure support , 2008, J. Comput. Phys..

[24]  Ronald Fedkiw,et al.  Efficient simulation of large bodies of water by coupling two and three dimensional techniques , 2006, ACM Trans. Graph..

[25]  Kenny Erleben,et al.  Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes , 2014, IEEE Transactions on Visualization and Computer Graphics.

[26]  Yoshinori Dobashi,et al.  A Fast Simulation Method Using Overlapping Grids for Interactions between Smoke and Rigid Objects , 2008, Comput. Graph. Forum.

[27]  Andre Pradhana,et al.  A moving least squares material point method with displacement discontinuity and two-way rigid body coupling , 2018, ACM Trans. Graph..

[28]  Sarah Tariq,et al.  Interactive fluid-particle simulation using translating Eulerian grids , 2010, I3D '10.

[29]  Erik H. Saenger,et al.  Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid , 2004 .

[30]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[31]  Jessica K. Hodgins,et al.  A point-based method for animating incompressible flow , 2009, SCA '09.

[32]  Ken Museth,et al.  VDB: High-resolution sparse volumes with dynamic topology , 2013, TOGS.

[33]  Alexey Stomakhin,et al.  A material point method for snow simulation , 2013, ACM Trans. Graph..

[34]  Eftychios Sifakis,et al.  SPGrid: a sparse paged grid structure applied to adaptive smoke simulation , 2014, ACM Trans. Graph..

[35]  James F. O'Brien,et al.  Fluids in deforming meshes , 2005, SCA '05.

[36]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[37]  James F. O'Brien,et al.  Simulating liquids and solid-liquid interactions with lagrangian meshes , 2013, TOGS.

[38]  Barry Koren,et al.  Finite-volume scheme for anisotropic diffusion , 2016, J. Comput. Phys..

[39]  R. Fedkiw,et al.  USING THE PARTICLE LEVEL SET METHOD AND A SECOND ORDER ACCURATE PRESSURE BOUNDARY CONDITION FOR FREE SURFACE FLOWS , 2003 .

[40]  S. Osher,et al.  Spatially adaptive techniques for level set methods and incompressible flow , 2006 .

[41]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, SIGGRAPH 2007.

[42]  Duc Quang Nguyen,et al.  Directable photorealistic liquids , 2004, SCA '04.

[43]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[44]  S. T. McDANIEL,et al.  FINITE DIFFERENCE SCHEMES , 1988 .

[45]  S. Popinet Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries , 2003 .

[46]  G. Turk,et al.  Fast viscoelastic behavior with thin features , 2008, SIGGRAPH 2008.

[47]  Manuel Menezes de Oliveira Neto,et al.  Efficient Smoke Simulation on Curvilinear Grids , 2013, Comput. Graph. Forum.

[48]  Andre Pradhana,et al.  GPU optimization of material point methods , 2018, ACM Trans. Graph..

[49]  Takeo Igarashi,et al.  Simulating Liquids on Dynamically Warping Grids , 2020, IEEE Transactions on Visualization and Computer Graphics.

[50]  Matthias Müller,et al.  Real-time Eulerian water simulation using a restricted tall cell grid , 2011, ACM Trans. Graph..

[51]  James F. O'Brien,et al.  Fluid animation with dynamic meshes , 2006, ACM Trans. Graph..

[52]  Yiying Tong,et al.  Stable, circulation-preserving, simplicial fluids , 2007, TOGS.

[53]  Pradeep Dubey,et al.  Large-scale fluid simulation using velocity-vorticity domain decomposition , 2012, ACM Trans. Graph..

[54]  Kenny Erleben,et al.  Optimization-based Fluid Simulation on Unstructured Meshes , 2010, VRIPHYS.

[55]  Christopher Wojtan,et al.  Highly adaptive liquid simulations on tetrahedral meshes , 2013, ACM Trans. Graph..

[56]  Barry Koren,et al.  Finite-difference schemes for anisotropic diffusion , 2014, J. Comput. Phys..

[57]  Kai Gao,et al.  An improved rotated staggered-grid finite-difference method with fourth-order temporal accuracy for elastic-wave modeling in anisotropic media , 2017, J. Comput. Phys..

[58]  Jonathan Richard Shewchuk,et al.  Isosurface stuffing: fast tetrahedral meshes with good dihedral angles , 2007, ACM Trans. Graph..

[59]  Michael B. Nielsen,et al.  A collocated spatially adaptive approach to smoke simulation in bifrost , 2018, SIGGRAPH 2018.

[60]  Eftychios Sifakis,et al.  Power diagrams and sparse paged grids for high resolution adaptive liquids , 2017, ACM Trans. Graph..