Locator-Checker-Scaler Object Tracking Using Spatially Ordered and Weighted Patch Descriptor

In this paper, we propose a simple yet effective object descriptor and a novel tracking algorithm to track a target object accurately. For the object description, we divide the bounding box of a target object into multiple patches and describe them with color and gradient histograms. Then, we determine the foreground weight of each patch to alleviate the impacts of background information in the bounding box. To this end, we perform random walk with restart (RWR) simulation. We then concatenate the weighted patch descriptors to yield the spatially ordered and weighted patch (SOWP) descriptor. For the object tracking, we incorporate the proposed SOWP descriptor into a novel tracking algorithm, which has three components: locator, checker, and scaler (LCS). The locator and the scaler estimate the center location and the size of a target, respectively. The checker determines whether it is safe to adjust the target scale in a current frame. These three components cooperate with one another to achieve robust tracking. Experimental results demonstrate that the proposed LCS tracker achieves excellent performance on recent benchmarks.

[1]  Ming-Hsuan Yang,et al.  Hierarchical Convolutional Features for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[2]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[3]  Hongdong Li,et al.  Beyond Local Search: Tracking Objects Everywhere with Instance-Specific Proposals , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Qiang Wang,et al.  Joint Scale-Spatial Correlation Tracking with Adaptive Rotation Estimation , 2015, ICCV Workshops.

[5]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[7]  Dit-Yan Yeung,et al.  Understanding and Diagnosing Visual Tracking Systems , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[8]  Chang-Su Kim,et al.  Multiscale Saliency Detection Using Random Walk With Restart , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[9]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[10]  Jin Gao,et al.  Transfer Learning Based Visual Tracking with Gaussian Processes Regression , 2014, ECCV.

[11]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[12]  Michael Felsberg,et al.  Learning Spatially Regularized Correlation Filters for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[13]  Qingming Huang,et al.  Hedged Deep Tracking , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[15]  Sang Uk Lee,et al.  Generative Image Segmentation Using Random Walks with Restart , 2008, ECCV.

[16]  Michael Felsberg,et al.  Convolutional Features for Correlation Filter Based Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[17]  Dit-Yan Yeung,et al.  Learning a Deep Compact Image Representation for Visual Tracking , 2013, NIPS.

[18]  Lu Zhang,et al.  Preserving Structure in Model-Free Tracking , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Chang-Su Kim,et al.  Multiple random walkers and their application to image cosegmentation , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Koen E. A. van de Sande,et al.  Selective Search for Object Recognition , 2013, International Journal of Computer Vision.

[22]  Ales Leonardis,et al.  Visual Object Tracking Performance Measures Revisited , 2015, IEEE Transactions on Image Processing.

[23]  Bohyung Han,et al.  Learning Multi-domain Convolutional Neural Networks for Visual Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[25]  Arnold W. M. Smeulders,et al.  Siamese Instance Search for Tracking-Supplementary Material , 2016 .

[26]  Ming-Hsuan Yang,et al.  Long-term correlation tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Jae-Yeong Lee,et al.  Visual tracking by partition-based histogram backprojection and maximum support criteria , 2011, 2011 IEEE International Conference on Robotics and Biomimetics.

[28]  Tong Zhang,et al.  Accelerating Stochastic Gradient Descent using Predictive Variance Reduction , 2013, NIPS.

[29]  Stan Sclaroff,et al.  MEEM: Robust Tracking via Multiple Experts Using Entropy Minimization , 2014, ECCV.

[30]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[31]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[32]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Jianke Zhu,et al.  A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration , 2014, ECCV Workshops.

[35]  Zhe Chen,et al.  MUlti-Store Tracker (MUSTer): A cognitive psychology inspired approach to object tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Luca Bertinetto,et al.  Fully-Convolutional Siamese Networks for Object Tracking , 2016, ECCV Workshops.

[37]  Nanning Zheng,et al.  Constructing Adaptive Complex Cells for Robust Visual Tracking , 2013, 2013 IEEE International Conference on Computer Vision.

[38]  Shai Avidan,et al.  Support Vector Tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[39]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Rynson W. H. Lau,et al.  Visual Tracking via Locality Sensitive Histograms , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[41]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Anton van den Hengel,et al.  Learning Compact Binary Codes for Visual Tracking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[43]  Christos Faloutsos,et al.  Automatic multimedia cross-modal correlation discovery , 2004, KDD.

[44]  Chang-Su Kim,et al.  Multihypothesis trajectory analysis for robust visual tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[45]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Gang Wang,et al.  Video tracking using learned hierarchical features. , 2015, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[49]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[50]  Cordelia Schmid,et al.  Online Object Tracking with Proposal Selection , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[51]  Han-Ul Kim,et al.  SOWP: Spatially Ordered and Weighted Patch Descriptor for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[52]  Andrea Cavallaro,et al.  Tracker-Level Fusion for Robust Bayesian Visual Tracking , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[53]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[54]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Erik Blasch,et al.  Encoding color information for visual tracking: Algorithms and benchmark , 2015, IEEE Transactions on Image Processing.

[56]  Andrea Cavallaro,et al.  Correlation-based self-correcting tracking , 2015, Neurocomputing.

[57]  Christos Faloutsos,et al.  Fast Random Walk with Restart and Its Applications , 2006, Sixth International Conference on Data Mining (ICDM'06).

[58]  Michael Felsberg,et al.  The Visual Object Tracking VOT2015 Challenge Results , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[59]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[60]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[61]  Chang-Su Kim,et al.  Spatiotemporal Saliency Detection for Video Sequences Based on Random Walk With Restart , 2015, IEEE Transactions on Image Processing.