Genome-wide analysis of differential transcriptional and epigenetic variability across human immune cell types

[1]  A. Valencia,et al.  Automatic identification of informative regions with epigenomic changes associated to hematopoiesis , 2016, bioRxiv.

[2]  Matthew T. Maurano,et al.  Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells , 2016, Cell.

[3]  J. P. McCoy,et al.  Systematic Analysis of Cell-to-Cell Expression Variation of T Lymphocytes in a Human Cohort Identifies Aging and Genetic Associations. , 2016, Immunity.

[4]  A. Valencia,et al.  Searching for the chromatin determinants of human hematopoiesis , 2016 .

[5]  A. Regev,et al.  Writ large: Genomic dissection of the effect of cellular environment on immune response , 2016, Science.

[6]  Nathan C. Sheffield,et al.  Multi-Omics of Single Cells: Strategies and Applications , 2016, Trends in biotechnology.

[7]  O. Soehnlein,et al.  Neutrophil heterogeneity: implications for homeostasis and pathogenesis. , 2016, Blood.

[8]  Charles Y. Lin,et al.  Epigenomic analysis detects aberrant super-enhancer DNA methylation in human cancer , 2016, Genome Biology.

[9]  I. Amit,et al.  Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors , 2015, Cell.

[10]  C. Ponting,et al.  Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity , 2015, Nature Methods.

[11]  J. Knight,et al.  Genomic modulators of gene expression in human neutrophils , 2015, Nature Communications.

[12]  E. Bonifacio,et al.  Widespread seasonal gene expression reveals annual differences in human immunity and physiology , 2015, Nature Communications.

[13]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[14]  Nathan C. Sheffield,et al.  Single-Cell DNA Methylome Sequencing and Bioinformatic Inference of Epigenomic Cell-State Dynamics , 2015, Cell reports.

[15]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[16]  V. Pancaldi,et al.  Higher gene expression variability in the more aggressive subtype of chronic lymphocytic leukemia , 2015, Genome Medicine.

[17]  A. Valencia,et al.  Higher gene expression variability in the more aggressive subtype of chronic lymphocytic leukemia , 2015, Genome Medicine.

[18]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[19]  Fabian J Theis,et al.  Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells , 2015, Nature Biotechnology.

[20]  E. Dermitzakis,et al.  Tissue-Specific Effects of Genetic and Epigenetic Variation on Gene Regulation and Splicing , 2015, PLoS genetics.

[21]  Michael J. Ziller,et al.  Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. , 2014, Cancer cell.

[22]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[23]  A. Oshlack,et al.  DiffVar: a new method for detecting differential variability with application to methylation in cancer and aging , 2014, bioRxiv.

[24]  Luonan Chen,et al.  The Dynamics of DNA Methylation Covariation Patterns in Carcinogenesis , 2014, PLoS Comput. Biol..

[25]  A. Tarakhovsky,et al.  Epigenetic control of immunity. , 2014, Cold Spring Harbor perspectives in biology.

[26]  Rafael A. Irizarry,et al.  Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays , 2014, Bioinform..

[27]  C. Rice,et al.  Interferon-stimulated genes: a complex web of host defenses. , 2014, Annual review of immunology.

[28]  R. Andrews,et al.  Innate Immune Activity Conditions the Effect of Regulatory Variants upon Monocyte Gene Expression , 2014, Science.

[29]  I. Amit,et al.  Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues into Cell Types , 2014, Science.

[30]  Leighton J. Core,et al.  Coordinated Effects of Sequence Variation on DNA Binding, Chromatin Structure, and Transcription , 2013, Science.

[31]  David J. Arenillas,et al.  JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles , 2013, Nucleic Acids Res..

[32]  Christofer L. Bäcklin,et al.  Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia , 2013, Genome Biology.

[33]  M. Ross,et al.  Meta-analysis of IDH-mutant cancers identifies EBF1 as an interaction partner for TET2 , 2013, Nature Communications.

[34]  P. Laird,et al.  Low-level processing of Illumina Infinium DNA Methylation BeadArrays , 2013, Nucleic acids research.

[35]  P. Kubes,et al.  Neutrophil recruitment and function in health and inflammation , 2013, Nature Reviews Immunology.

[36]  Vasyl Pihur,et al.  Gene expression anti-profiles as a basis for accurate universal cancer signatures , 2012, BMC Bioinformatics.

[37]  A. Oshlack,et al.  SWAN: Subset-quantile Within Array Normalization for Illumina Infinium HumanMethylation450 BeadChips , 2012, Genome Biology.

[38]  Peter A. Jones Functions of DNA methylation: islands, start sites, gene bodies and beyond , 2012, Nature Reviews Genetics.

[39]  H. Kitchener,et al.  Epigenetic variability in cells of normal cytology is associated with the risk of future morphological transformation , 2012, Genome Medicine.

[40]  A. Zychlinsky,et al.  Neutrophil function: from mechanisms to disease. , 2012, Annual review of immunology.

[41]  A. Feinberg,et al.  Regulated Noise in the Epigenetic Landscape of Development and Disease , 2012, Cell.

[42]  Manolis Kellis,et al.  ChromHMM: automating chromatin-state discovery and characterization , 2012, Nature Methods.

[43]  H. Simon,et al.  Peculiarities of cell death mechanisms in neutrophils , 2011, Cell Death and Differentiation.

[44]  John Quackenbush,et al.  Variance of Gene Expression Identifies Altered Network Constraints in Neurological Disease , 2011, PLoS genetics.

[45]  A. Feinberg,et al.  Increased methylation variation in epigenetic domains across cancer types , 2011, Nature Genetics.

[46]  Технология,et al.  National Climatic Data Center , 2011 .

[47]  William Stafford Noble,et al.  FIMO: scanning for occurrences of a given motif , 2011, Bioinform..

[48]  B. Snijder,et al.  Origins of regulated cell-to-cell variability , 2011, Nature Reviews Molecular Cell Biology.

[49]  K. Kaneko,et al.  Fluctuation and response in biology , 2010, Cellular and Molecular Life Sciences.

[50]  Zhaolei Zhang,et al.  Gene expression variations are predictive for stochastic noise , 2010, Nucleic Acids Res..

[51]  Yu Liu,et al.  Gene Expression Variability within and between Human Populations and Implications toward Disease Susceptibility , 2010, PLoS Comput. Biol..

[52]  Manolis Kellis,et al.  Discovery and characterization of chromatin states for systematic annotation of the human genome , 2010, Nature Biotechnology.

[53]  Claire V. Harper,et al.  Population robustness arising from cellular heterogeneity , 2010, Proceedings of the National Academy of Sciences.

[54]  Cory Y. McLean,et al.  GREAT improves functional interpretation of cis-regulatory regions , 2010, Nature Biotechnology.

[55]  R. Salgia,et al.  Fyn: a novel molecular target in cancer. , 2010, Cancer.

[56]  Matthew D. Young,et al.  Gene ontology analysis for RNA-seq: accounting for selection bias , 2010, Genome Biology.

[57]  A. Feinberg,et al.  Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease , 2010, Proceedings of the National Academy of Sciences.

[58]  S. Swain,et al.  Age-associated increase in lifespan of naïve CD4 T cells contributes to T-cell homeostasis but facilitates development of functional defects , 2009, Proceedings of the National Academy of Sciences.

[59]  M. Blackman,et al.  T-cell immunosenescence: lessons learned from mouse models of aging , 2009, Trends in Immunology.

[60]  Hannah H. Chang,et al.  Non-genetic heterogeneity — a mutation-independent driving force for the somatic evolution of tumours , 2009, Nature Reviews Genetics.

[61]  Young-Joon Kim,et al.  Intrinsic variability of gene expression encoded in nucleosome positioning sequences , 2009, Nature Genetics.

[62]  Mathieu Bastian,et al.  Gephi: An Open Source Software for Exploring and Manipulating Networks , 2009, ICWSM.

[63]  Pornpimol Charoentong,et al.  ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks , 2009, Bioinform..

[64]  David S. Harburger,et al.  Integrin signalling at a glance , 2009, Journal of Cell Science.

[65]  N. Rose,et al.  Sex differences in autoimmune disease from a pathological perspective. , 2008, The American journal of pathology.

[66]  Jianer Chen,et al.  A Fast Agglomerate Algorithm for Mining Functional Modules in Protein Interaction Networks , 2008, 2008 International Conference on BioMedical Engineering and Informatics.

[67]  A. Huttenlocher,et al.  Asymmetric localization of calpain 2 during neutrophil chemotaxis. , 2007, Molecular biology of the cell.

[68]  Farren J. Isaacs,et al.  Phenotypic consequences of promoter-mediated transcriptional noise. , 2006, Molecular cell.

[69]  G. Gilkeson,et al.  ETS transcription factors and regulation of immunity , 2006, Archivum Immunologiae et Therapiae Experimentalis.

[70]  N. Weng Aging of the immune system: how much can the adaptive immune system adapt? , 2006, Immunity.

[71]  M. Hemler Tetraspanin functions and associated microdomains , 2005, Nature Reviews Molecular Cell Biology.

[72]  J. Raser,et al.  Noise in Gene Expression: Origins, Consequences, and Control , 2005, Science.

[73]  Rafael A. Irizarry,et al.  Bioinformatics and Computational Biology Solutions using R and Bioconductor , 2005 .

[74]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[75]  B. Pugh,et al.  Identification and Distinct Regulation of Yeast TATA Box-Containing Genes , 2004, Cell.

[76]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[77]  J. Brugge,et al.  Sensing the environment: a historical perspective on integrin signal transduction , 2002, Nature Cell Biology.

[78]  F. Berditchevski Complexes of tetraspanins with integrins: more than meets the eye. , 2001, Journal of cell science.

[79]  M. Gerstein,et al.  RNA expression patterns change dramatically in human neutrophils exposed to bacteria. , 2001, Blood.

[80]  W. Dröge,et al.  Role of cysteine and glutathione in HIV infection and other diseases associated with muscle wasting and immunological dysfunction , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[81]  Santa Jeremy Ono,et al.  A novel cysteine-rich sequence-specific DNA-binding protein interacts with the conserved X-box motif of the human major histocompatibility complex class II genes via a repeated Cys-His domain and functions as a transcriptional repressor , 1994, The Journal of experimental medicine.

[82]  T. Palella,et al.  Quantitative changes in T cell DNA methylation occur during differentiation and ageing , 1990, European journal of immunology.

[83]  A. Gachagan,et al.  Supplement 2 , 1903, Revista Portuguesa de Enfermagem de Reabilitação.

[84]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[85]  R. Salgia,et al.  Fyn: a novel molecular target in prostate cancer , 2010 .

[86]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[87]  Gordon K. Smyth,et al.  limma: Linear Models for Microarray Data , 2005 .

[88]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[89]  Andrew E. Jaffe,et al.  Bioinformatics Applications Note Gene Expression the Sva Package for Removing Batch Effects and Other Unwanted Variation in High-throughput Experiments , 2022 .

[90]  Jeffrey W. Smith,et al.  Stochastic Gene Expression in a Single Cell , 2022 .