Stability of Radner equilibria with respect to small frictions

We study risk-sharing equilibria with trading subject to small proportional transaction costs. We show that the frictionless equilibrium prices also form an “asymptotic equilibrium” in the small-cost limit. More precisely, there exist asymptotically optimal policies for all agents and a split of the trading cost according to their risk aversions for which the frictionless equilibrium prices still clear the market. Starting from a frictionless equilibrium, this allows studying the interplay of volatility, liquidity and trading volume.

[1]  G. Constantinides,et al.  Portfolio selection with transactions costs , 1976 .

[2]  P. Christensen,et al.  Incomplete Continuous-Time Securities Markets with Stochastic Income Volatility , 2010, 1009.3479.

[3]  Bruno Bouchard,et al.  Equilibrium returns with transaction costs , 2017, Finance and Stochastics.

[4]  Gordan Žitković An example of a stochastic equilibrium with incomplete markets , 2012, Finance Stochastics.

[5]  V. Henderson,et al.  VALUATION OF CLAIMS ON NONTRADED ASSETS USING UTILITY MAXIMIZATION , 2002 .

[6]  Kim Weston Existence of a Radner equilibrium in a model with transaction costs , 2017, 1702.01706.

[7]  Halil Mete Soner,et al.  Asymptotics for fixed transaction costs , 2015, Finance Stochastics.

[8]  J. Kallsen,et al.  Portfolio Optimization under Small Transaction Costs: a Convex Duality Approach , 2013, 1309.3479.

[9]  M. Yor,et al.  The importance of strictly local martingales; applications to radial Ornstein–Uhlenbeck processes , 1999 .

[10]  Y. Kabanov,et al.  On the optimal portfolio for the exponential utility maximization: remarks to the six‐author paper , 2002 .

[11]  H. Soner,et al.  TRADING WITH SMALL PRICE IMPACT , 2017 .

[12]  Robert Almgren,et al.  Option Hedging with Smooth Market Impact , 2016 .

[13]  F. Delbaen,et al.  Exponential Hedging and Entropic Penalties , 2002 .

[14]  Walter Schachermayer,et al.  Transaction costs, trading volume, and the liquidity premium , 2014, Finance Stochastics.

[15]  Gordan Zitkovic,et al.  OPTIMAL INVESTMENT WITH AN UNBOUNDED RANDOM ENDOWMENT AND UTILITY‐BASED PRICING , 2007, 0706.0478.

[16]  B. Dumas,et al.  An Exact Solution to a Dynamic Portfolio Choice Problem under Transactions Costs , 1991 .

[17]  W. Schachermayer Optimal investment in incomplete markets when wealth may become negative , 2001 .

[18]  Jiang Wang,et al.  Asset Prices and Trading Volume under Fixed Transactions Costs , 2001, Journal of Political Economy.

[19]  P. Meyer Inegalites de normes pour les integrales stochastiques , 1978 .

[20]  Jakša Cvitanić,et al.  HEDGING AND PORTFOLIO OPTIMIZATION UNDER TRANSACTION COSTS: A MARTINGALE APPROACH12 , 1996 .

[21]  William R. Zame,et al.  The Consumption-Based Capital Asset Pricing Model , 1989 .

[22]  M. Frittelli The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets , 2000 .

[23]  H. Soner,et al.  National Centre of Competence in Research Financial Valuation and Risk Management Working Paper No . 845 Homogenization and Asymptotics for Small Transaction Costs : The Multidimensional Case , 2013 .

[24]  Roy Radner,et al.  Existence of Equilibrium of Plans, Prices, and Price Expectations in a Sequence of Markets , 1972 .

[25]  Peter Tankov,et al.  Asymptotic optimal tracking: feedback strategies , 2016 .

[26]  DYNAMIC TRADING VOLUME , 2017 .

[27]  Peter Ove Christensen,et al.  Equilibrium in Securities Markets with Heterogeneous Investors and Unspanned Income Risk , 2011, J. Econ. Theory.

[28]  Sara Biagini,et al.  The supermartingale property of the optimal wealth process for general semimartingales , 2007, Finance Stochastics.

[29]  Jin Hyuk Choi,et al.  Taylor approximation of incomplete Radner equilibrium models , 2013, Finance Stochastics.

[30]  Walter Schachermayer,et al.  A super-martingale property of the optimal portfolio process , 2003, Finance Stochastics.

[31]  Dimitri Vayanos,et al.  Transaction Costs and Asset Prices: A Dynamic Equilibrium model , 1998 .

[32]  E. Dávila Optimal Financial Transaction Taxes , 2020, SSRN Electronic Journal.

[33]  Incomplete stochastic equilibria for dynamic monetary utility , 2015, 1505.07224.

[34]  H. Soner,et al.  Optimal Investment and Consumption with Transaction Costs , 1994 .

[35]  A. R. Norman,et al.  Portfolio Selection with Transaction Costs , 1990, Math. Oper. Res..

[36]  P. Wilmott,et al.  An Asymptotic Analysis of an Optimal Hedging Model for Option Pricing with Transaction Costs , 1997 .

[37]  Mark-Roman Feodoria Optimal investment and utility indifference pricing in the presenceof small fixed transaction costs , 2016 .

[38]  Marko H. Weber,et al.  DYNAMIC TRADING VOLUME , 2012 .

[39]  Dimitri Vayanos,et al.  Equilibrium interest rate and liquidity premium with transaction costs , 1999 .

[40]  P. Protter Stochastic integration and differential equations , 1990 .

[41]  B. Dumas,et al.  The Dynamic Properties of Financial-Market Equilibrium with Trading Fees , 2013 .

[42]  Ioannis Karatzas,et al.  Equilibrium Models with Singular Asset Prices , 1991 .

[43]  C. Dellacherie,et al.  Probabilities and Potential B: Theory of Martingales , 2012 .

[44]  Garleanu Nicolae,et al.  Dynamic Trading with Predictable Returns and Transaction Costs , 2009 .

[45]  Deborah Lucas,et al.  Evaluating the Effects of Incomplete Markets on Risk Sharing and Asset Pricing , 1993, Journal of Political Economy.

[47]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[48]  M. Rosenbaum,et al.  Asymptotically optimal discretization of hedging strategies with jumps , 2011, 1108.5940.

[49]  M. Owen,et al.  Utility based optimal hedging in incomplete markets , 2002 .

[50]  R. Uppal,et al.  Asset Prices in General Equilibrium with Recursive Utility and Illiquidity Induced by Transactions Costs , 2014 .

[51]  Steven E. Shreve,et al.  Asymptotic analysis for optimal investment and consumption with transaction costs , 2004, Finance Stochastics.

[52]  S. Shreve,et al.  Methods of Mathematical Finance , 2010 .

[53]  G. Constantinides Capital Market Equilibrium with Transaction Costs , 1986, Journal of Political Economy.

[54]  J. Muhle‐Karbe,et al.  On using shadow prices in portfolio optimization with transaction costs , 2010, 1010.4989.

[55]  Jiang Wang,et al.  A Model of Intertemporal Asset Prices Under Asymmetric Information , 2011 .

[56]  M. Rosenbaum,et al.  Asymptotic Lower Bounds for Optimal Tracking: a Linear Programming Approach , 2015, 1510.04295.

[57]  Johannes Muhle-Karbe,et al.  Option Pricing and Hedging with Small Transaction Costs , 2012 .

[58]  J. Muhle‐Karbe,et al.  THE GENERAL STRUCTURE OF OPTIMAL INVESTMENT AND CONSUMPTION WITH SMALL TRANSACTION COSTS , 2013, 1303.3148.

[59]  Hong Liu,et al.  Optimal Portfolio Selection with Transaction Costs and Finite Horizons , 2002 .

[60]  R. Radner Collusive behavior in noncooperative epsilon-equilibria of oligopolies with long but finite lives , 1980 .

[61]  Nicolae Gârleanu,et al.  Dynamic portfolio choice with frictions , 2016, J. Econ. Theory.

[62]  Ralf Korn,et al.  Portfolio optimisation with strictly positive transaction costs and impulse control , 1998, Finance Stochastics.

[63]  Nizar Touzi,et al.  Homogenization and Asymptotics for Small Transaction Costs , 2012, SIAM J. Control. Optim..

[64]  D. Duffie Dynamic Asset Pricing Theory , 1992 .

[65]  Steven E. Shreve,et al.  Futures trading with transaction costs , 2010 .

[66]  Robert Almgren,et al.  Optimal execution of portfolio trans-actions , 2000 .

[67]  Sara Biagini,et al.  Utility maximization in incomplete markets for unbounded processes , 2005, Finance Stochastics.

[68]  Avinash Dixit,et al.  Analytical Approximations in Models of Hysteresis , 1991 .