Code offloading on opportunistic computing

Although mobile smart devices are becoming more and more resourceful, they cannot compete with higher-end devices in terms of computational capabilities. Therefore, it is generally advantageous to offload computationally intensive tasks. While cloud-based offloading is popular, it has a non-negligible impact on the energy consumption of mobile devices. Our solution is a novel approach based on locally opportunistic code offloading that leverages the local availability of higher-end devices. We aim to demonstrate the benefits of our approach with respect to a widely adopted benchmark: face recognition.

[1]  Daniele Puccinelli,et al.  Characterization of the impact of resource availability on opportunistic computing , 2012, MCC '12.

[2]  Takayuki Nishio,et al.  Adaptive resource discovery in mobile cloud computing , 2014, Comput. Commun..

[3]  Françoise Sailhan,et al.  Scalable Service Discovery for MANET , 2005, Third IEEE International Conference on Pervasive Computing and Communications.

[4]  Thierry Coupaye,et al.  ASM: a code manipulation tool to implement adaptable systems , 2002 .

[5]  Philippe Jacquet,et al.  Optimized Link State Routing Protocol (OLSR) , 2003, RFC.

[6]  Franck Legendre,et al.  Social Trust in Opportunistic Networks , 2010, 2010 INFOCOM IEEE Conference on Computer Communications Workshops.

[7]  Marco Conti,et al.  Routing Issues in Opportunistic Networks , 2009, Middleware for Network Eccentric and Mobile Applications.

[8]  Paramvir Bahl,et al.  Fine-grained power modeling for smartphones using system call tracing , 2011, EuroSys '11.

[9]  Kun-Chan Lan,et al.  A Survey of Opportunistic Networks , 2008, 22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008).

[10]  Arun Venkataramani,et al.  Augmenting mobile 3G using WiFi , 2010, MobiSys '10.

[11]  Hassan Artail,et al.  DSDM: A Distributed Service Discovery Model for Manets , 2008, IEEE Transactions on Parallel and Distributed Systems.

[12]  Kevin R. Fall,et al.  A delay-tolerant network architecture for challenged internets , 2003, SIGCOMM '03.

[13]  Charles E. Perkins,et al.  Ad hoc On-Demand Distance Vector (AODV) Routing , 2001, RFC.

[14]  Guobin Shen,et al.  MobiUS: enable together-viewing video experience across two mobile devices , 2007, MobiSys '07.

[15]  Sabine Schulze,et al.  Statistics A Bayesian Perspective , 2016 .

[16]  Jörg Ott,et al.  SCAMPI application platform , 2012, CHANTS '12.

[17]  Jörg Ott,et al.  SCAMPI: service platform for social aware mobile and pervasive computing , 2012, MCC '12.

[18]  Marc Langheinrich,et al.  Privacy by Design - Principles of Privacy-Aware Ubiquitous Systems , 2001, UbiComp.

[19]  Leandros Tassiulas,et al.  Network layer support for service discovery in mobile ad hoc networks , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[20]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[21]  Cecilia Mascolo,et al.  SociableSense: exploring the trade-offs of adaptive sampling and computation offloading for social sensing , 2011, MobiCom.

[22]  Kevin Ashton,et al.  That ‘Internet of Things’ Thing , 1999 .

[23]  Timothy J. Harvey,et al.  AS imple, Fast Dominance Algorithm , 1999 .

[24]  Bu-Sung Lee,et al.  μCloud: Towards a New Paradigm of Rich Mobile Applications , 2011, ANT/MobiWIS.

[25]  Samuel Kounev,et al.  Elasticity in Cloud Computing: What It Is, and What It Is Not , 2013, ICAC.

[26]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[27]  Pan Hui,et al.  ThinkAir: Dynamic resource allocation and parallel execution in the cloud for mobile code offloading , 2012, 2012 Proceedings IEEE INFOCOM.

[28]  Silvia Giordano,et al.  Routing in Opportunistic Networks , 2009, Int. J. Ambient Comput. Intell..

[29]  Anders Lindgren,et al.  Probabilistic routing in intermittently connected networks , 2003, MOCO.

[30]  Cauligi S. Raghavendra,et al.  Spray and wait: an efficient routing scheme for intermittently connected mobile networks , 2005, WDTN '05.

[31]  Clayton Shepard,et al.  LiveLab: measuring wireless networks and smartphone users in the field , 2011, SIGMETRICS Perform. Evaluation Rev..

[32]  Daniele Puccinelli,et al.  The human element as the key enabler of pervasiveness , 2011, 2011 The 10th IFIP Annual Mediterranean Ad Hoc Networking Workshop.

[33]  Xu Chen,et al.  COMET: Code Offload by Migrating Execution Transparently , 2012, OSDI.

[34]  Andreas Pfitzmann,et al.  Anonymity, Unobservability, and Pseudonymity - A Proposal for Terminology , 2000, Workshop on Design Issues in Anonymity and Unobservability.

[35]  Lin Zhong,et al.  Self-constructive high-rate system energy modeling for battery-powered mobile systems , 2011, MobiSys '11.

[36]  Tian Yu,et al.  Adaptive Computation Offloading from Mobile Devices into the Cloud , 2012, 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications.

[37]  Pan Hui,et al.  Have you asked your neighbors? A Hidden Market approach for device-to-device offloading , 2016, 2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM).

[38]  Alessandro Puiatti,et al.  Probabilistic Routing Protocol for Intermittently Connected Mobile Ad hoc Network (PROPICMAN) , 2007, 2007 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks.

[39]  Cauligi S. Raghavendra,et al.  Single-copy routing in intermittently connected mobile networks , 2004, 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004..

[40]  Cecilia Mascolo,et al.  CAR: Context-Aware Adaptive Routing for Delay-Tolerant Mobile Networks , 2009, IEEE Transactions on Mobile Computing.

[41]  Muttukrishnan Rajarajan,et al.  Robust access control framework for mobile cloud computing network , 2015, Comput. Commun..

[42]  Ramesh Govindan,et al.  Calculating source line level energy information for Android applications , 2013, ISSTA.

[43]  Silvia Giordano,et al.  Using barometric pressure data to recognize vertical displacement activities on smartphones , 2016, Comput. Commun..

[44]  Khaled A. Harras,et al.  Towards Computational Offloading in Mobile Device Clouds , 2013, 2013 IEEE 5th International Conference on Cloud Computing Technology and Science.

[45]  Alastair R. Beresford,et al.  MockDroid: trading privacy for application functionality on smartphones , 2011, HotMobile '11.

[46]  Jörg Ott,et al.  On search and content availability in opportunistic networks , 2016, Comput. Commun..

[47]  Min Chen,et al.  On the computation offloading at ad hoc cloudlet: architecture and service modes , 2015, IEEE Communications Magazine.

[48]  Alec Wolman,et al.  Demo: Kahawai: high-quality mobile gaming using GPU offload , 2015, MobiSys.

[49]  Lothar Thiele,et al.  The FlockLab testbed architecture , 2009, SenSys '09.

[50]  J. Kaiser,et al.  Survey of mobile ad hoc network routing protocols , 2005 .

[51]  Refik Molva,et al.  Core: a collaborative reputation mechanism to enforce node cooperation in mobile ad hoc networks , 2002, Communications and Multimedia Security.

[52]  Bernhard Plattner,et al.  Obfuscating IEEE 802.15.4 communication using secret spreading codes , 2012, 2012 9th Annual Conference on Wireless On-Demand Network Systems and Services (WONS).

[53]  Steve Freeman,et al.  Endo-testing: unit testing with mock objects , 2001 .

[54]  Paramvir Bahl,et al.  The Case for VM-Based Cloudlets in Mobile Computing , 2009, IEEE Pervasive Computing.

[55]  Baruch Awerbuch,et al.  An on-demand secure routing protocol resilient to byzantine failures , 2002, WiSE '02.

[56]  Stephan Eidenbenz,et al.  Ad hoc-VCG: a truthful and cost-efficient routing protocol for mobile ad hoc networks with selfish agents , 2003, MobiCom '03.

[57]  Theus Hossmann,et al.  Twitter in disaster mode: opportunistic communication and distribution of sensor data in emergencies , 2011 .

[58]  Marco Conti,et al.  From opportunistic networks to opportunistic computing , 2010, IEEE Communications Magazine.

[59]  Amin Vahdat,et al.  Epidemic Routing for Partially-Connected Ad Hoc Networks , 2009 .

[60]  J. Wenny Rahayu,et al.  Dynamic Mobile Cloud Computing: Ad Hoc and Opportunistic Job Sharing , 2011, 2011 Fourth IEEE International Conference on Utility and Cloud Computing.

[61]  Lida Xu,et al.  The internet of things: a survey , 2014, Information Systems Frontiers.

[62]  Seong-Moo Yoo,et al.  Black hole attack in mobile Ad Hoc networks , 2004, ACM-SE 42.

[63]  Mohan Kumar,et al.  Minimum-Delay Service Provisioning in Opportunistic Networks , 2011, IEEE Transactions on Parallel and Distributed Systems.

[64]  Frances E. Allen,et al.  Control-flow analysis , 2022 .

[65]  Sethi Ashish Kumar,et al.  Android Operating System , 2012 .

[66]  Marco Conti,et al.  Opportunistic networking: data forwarding in disconnected mobile ad hoc networks , 2006, IEEE Communications Magazine.

[67]  Kwok-Yan Lam,et al.  SAODV: A MANET Routing Protocol that can Withstand Black Hole Attack , 2009, 2009 International Conference on Computational Intelligence and Security.

[68]  Pan Hui,et al.  Haggle: A networking architecture designed around mobile users , 2006 .

[69]  Liviu Iftode,et al.  Crowds replace experts: Building better location-based services using mobile social network interactions , 2012, 2012 IEEE International Conference on Pervasive Computing and Communications.

[70]  George Mastorakis,et al.  Context-oriented opportunistic cloud offload processing for energy conservation in wireless devices , 2014, 2014 IEEE Globecom Workshops (GC Wkshps).

[71]  Bernhard Plattner,et al.  Service discovery in mobile ad hoc networks: a field theoretic approach , 2005, Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks.

[72]  V. Shanmuganathan A Survey on Gray Hole Attack in MANET , 2012 .

[73]  Mohan Kumar,et al.  Opportunities in Opportunistic Computing , 2010, Computer.

[74]  Giovanni Pau,et al.  MoViT: the mobile network virtualized testbed , 2012, VANET@MOBICOM.

[75]  Marco Zuniga,et al.  NEAT: a novel energy analysis toolkit for free-roaming smartphones , 2014, SenSys.

[76]  Nils Ole Tippenhauer,et al.  Low-complexity Visible Light Networking with LED-to-LED communication , 2012, 2012 IFIP Wireless Days.

[77]  Harry Zhang,et al.  The Optimality of Naive Bayes , 2004, FLAIRS.

[78]  Ramesh Govindan,et al.  Estimating Android applications' CPU energy usage via bytecode profiling , 2012, 2012 First International Workshop on Green and Sustainable Software (GREENS).

[79]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[80]  Hojung Cha,et al.  AppScope: Application Energy Metering Framework for Android Smartphone Using Kernel Activity Monitoring , 2012, USENIX Annual Technical Conference.

[81]  Silvia Giordano,et al.  Gesture-based soft authentication , 2015, 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob).

[82]  Rajkumar Buyya,et al.  A Context Sensitive Offloading Scheme for Mobile Cloud Computing Service , 2015, 2015 IEEE 8th International Conference on Cloud Computing.

[83]  David J. Lilja,et al.  Measuring computer performance : A practitioner's guide , 2000 .

[84]  James H. Aylor,et al.  Computer for the 21st Century , 1999, Computer.

[85]  Eric Chen,et al.  Offloading Android applications to the cloud without customizing Android , 2012, 2012 IEEE International Conference on Pervasive Computing and Communications Workshops.

[86]  John R. Douceur,et al.  The Sybil Attack , 2002, IPTPS.

[87]  Giovanni Vigna,et al.  Designing Distributed Applications with Mobile Code Paradigms , 1997, Proceedings of the (19th) International Conference on Software Engineering.

[88]  Cynthia Dwork,et al.  Differential Privacy: A Survey of Results , 2008, TAMC.

[89]  Rajesh Gupta,et al.  Evaluating the effectiveness of model-based power characterization , 2011 .

[90]  Silvia Giordano,et al.  Context information prediction for social-based routing in opportunistic networks , 2012, Ad Hoc Networks.

[91]  D. A. Ostrowski,et al.  A Scalable, Lightweight WebOS Application Framework , 2012, 2012 IEEE First International Conference on Internet Operating Systems.

[92]  Antonio Pescapè,et al.  On the Integration of Cloud Computing and Internet of Things , 2014, 2014 International Conference on Future Internet of Things and Cloud.

[93]  Matt Welsh,et al.  MoteLab: a wireless sensor network testbed , 2005, IPSN '05.

[94]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[95]  Albert Y. Zomaya,et al.  Improving performance of mobile ad hoc networks using efficient Tactical On Demand Distance Vector (TAODV) routing algorithm , 2012 .

[96]  Arun Venkataramani,et al.  Energy consumption in mobile phones: a measurement study and implications for network applications , 2009, IMC '09.

[97]  Henri E. Bal,et al.  Cuckoo: A Computation Offloading Framework for Smartphones , 2010, MobiCASE.

[98]  Alec Wolman,et al.  MAUI: making smartphones last longer with code offload , 2010, MobiSys '10.

[99]  Abdelsalam Helal,et al.  Konark - a service discovery and delivery protocol for ad-hoc networks , 2003, 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003..

[100]  Hojung Cha,et al.  DevScope: a nonintrusive and online power analysis tool for smartphone hardware components , 2012, CODES+ISSS.

[101]  Byung-Gon Chun,et al.  CloneCloud: elastic execution between mobile device and cloud , 2011, EuroSys '11.

[102]  Khaled A. Harras,et al.  Towards Mobile Opportunistic Computing , 2015, 2015 IEEE 8th International Conference on Cloud Computing.